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Vector Sampling Expansion
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Abstract—The vector sampling expansion (VSE) is an extension where
of Papoulis’ generalized sampling expansion (GSE) to the vector
case. In VSE,N bandlimited signals, all with the same bandwidth T _ . .
B, are passed through a multi-input—-multi-output (MIMO) linear Flw)” =[Fi(w), » En(w)]
time invariant system that generatesM (M > N) output signals. [Gi(w), -, Gu(w)]
The goal is to reconstruct the input signals from the samples of the

output signals at a total sampling rate of /N times Nyquist rate, g Fi(w), G;(w) are the Fourier transforms off(¢), g,(t),
where the Nyquist rate isB /7 samples per second. We find neces- respectively

sary and sufficient conditions for this reconstruction. A surprising . . .
necessary condition for the case where all output signals are uni- e examine whether th¥ input signals can be reconstructed

formly sampled at the same rate {N/M times the Nyquist rate) from samples of thel/ output signals at rates that preserves
is that the expansion factorM /N must be an integer. This condi-  the total rate to béV times Nyquist rate (the rate obtained by
tion is no longer necessary when each output signal is sampled at asampling each of the input signals at the Nyquist rate). A VSE

different rate or sampled nonuniformly. This work also includes a s . - e . )
noise sensitivity analysis of VSE systems. We define the noise am_system, which is described in Fig. 1, is a system where such re

plification factor, which allows a quantitative comparison between ConStrUCtion. i§ possible. We will p"OViC_ie in .this paper the nec-
VSE systems, and determine the optimal VSE systems. essary conditions for such reconstructions in several cases. The

| : : : . conditions we provide are for signals with no known determin-
ndex Terms—Generalized sampling expansion, nonuniform = . . . .
sampling, quantization, sensitivity, signal reconstruction, signal istic functional relationship between them since dependency be-
sampling, vector sampling. tween the signals, if known, can be utilized to further reduce the
required sampling rate.

VSE systems appear in many practical applications. For ex-
ample, in a multiaccess wireless communication environment or

N HIS famous generalized sampling expansion (GSE) [Thdar/sonar environment, we may haveéransmitters, emitting
[2], Papoulis has shown that a bandlimited sigfidl of fi- N different signals, which are then received hyantennas. A

nite energy, passing throug¥ linear time-invariant (LTI) sys- question of great interest is how to sample the received signals
tems and generating responsg$t), £ = 1, ---, M, can be at the total minimal rate that will enable unique reconstruction
uniquely reconstructed, under some conditions orithiiters, and how to attain the most noise-robust system. VSE systems
from the samples of the output signglgn7’), sampled at /M  also appear whenever the information is represented by a vector
the Nyquist rate. Such a sampling scheme might be useful wisignal. For example, consider an RGB color image, and suppose
the original signal is not directly accessible, but some processed use, say, four color filters to acquire it. Sampling the filters
versions of it exist and may be used for reconstruction. More redtput and reconstructing the RGB image is a VSE system. In
cently [3], [4], the GSE has been extended to multidimensionihlis example, the problem of determining the proper arrange-
signals in which the signgl depends on several variables, i.ement of the filters on the sensor is equivalent to determining
f(z) = f(x1, ---, k). This work provides anotherectorex- appropriate sampling scheme of the VSE system.
tension to the GSE: the vector sampling expansion (VSE). The paper is organized as follows. In Section II, we discuss

We consider N bandlimited signals, or a signal vectorthe case of equal uniform sampling of all output channels. It
FOT = [A®), ---, fn(®)], all having the same bandwidthturns out, somewhat surprisingly, that there is a distinction be-
B that pass through a multi-input—multi-output (MIMO) LTItween expansion by an integer factor (i.&{/N is an integer)
system, as in the left-hand side of Fig. 1, to yiéifl output and expansion by a noninteger factor. When all the output sig-
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I. INTRODUCTION

signalsg(t)t = [g1(t), ---, gm(t)], where M > N. The nals are uniformly sampled at the same rate (whictVjg\/
transfer function of the MIMO system is denotBtw), where times the Nyquist rate), we show that reconstructiorf @ is
H(w)is anM x N matrix, and therefore, we have possible, with some conditions on the MIMO system, if and only
if the expansion factof//N is an integer. In this section, we
Gw)=H(w)F(w) (1) also find the reconstruction formula and discuss the stochastic
signal case. The main results of Section Il were also summa-
rized in [5].

: . . __Reconstruction is also possible whédi/N is not an in-
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i.e., itslth componentF?(w) = £y, (w + (lo — 1)c) where
Iy = [l/m] and

I = (Imodm), m does not dividé
2T m m dividesl.

7

Finally, T(w) is anM x M matrix whose(k, [)th component
is given by

Ti(w) = Hy, iy (0 + (12 = 1) - o). (6)

We observe that (4) is a set off equations for the
Fig. 1. Complete VSE system. mN = M unknownsI(w + ic), wherel = 1, ---, N, and
t =0, --, (m —1). By solving this system of equations, we
In Section V, we analyze the performance of VSE systemsg@et the Fourier transform of the input signals at all frequencies
the presence of white quantization noise. We find the necessang [—B, B], i.e., we can reconstruct the input signals. Note
and sufficient condition for an optimal VSE system in the sengkat this system of equations will have a single solution if the

of having a minimum mean square reconstruction error. determinant of the matrif’(w), which depends solely on the
MIMO system, is not zero for every € [-B, —B + ¢|. Many
Il. EQUAL UNIFORM SAMPLING MIMO systems satisfy this condition, but it should be checked

to determine if reconstruction is possible.

In this section, we discuss the case of equal uniform sam- . . .
ling in all M output channels of the MIMO system. We sho One simple example that enables reconstruction is as
P ) V¥ol|ows. Let H; be anM x N constant matrix of rankV.

Fhataumque reco.nstrucnon IS po_ssmle only WIMVW. 'SaN As discussed above, if this constant matrix is the MIMO
integer. We then find reconstruction formulas for this case |n . T . .
: : . : ansfer function, reconstruction is impossible since at any
time and frequency domains. Finally, we discuss the stochastic . .
signal case sampling time point, we get erend_ent samples. Suppose,
' however, that we stagger the signals, i.e., shift&teoutput
A. Expansion by an Integer Factor signal by (k —.1)T/M = (k.— 1)7r/_NB a.nd.then §ample
) i , each output signal at sampling perid@d This is equivalent
Congder the case WheM/N = misan mtegey. Whe_n to sampling at/V times the Nyquist rate while multiplexing
sampling atV/M the Nyquist rate, i.e., at a sampling PerOeryeen thels output signals. The transfer function of the

T = M= /N B (B is the bandwidth), we get aliased versions alimo system in this case iH(w) = D(w)H,, where

the output signals, which, at the frequency domain, are periodi w) = diag{l, #*T/M ... i«(M=DT/M} tis easy to

with a periodc = 25/m. We denote byGj(w) the Fourier gag that in this case, the resultifigw) has a full rank for allo,
transform of the sampledth output signal and observe thatand therefore, reconstruction is possible.

since it is periodic with a period, it is sufficient to consider |y next sh1ow that we can get such a solvable set of equa-
only one period, say € [-B, —B + c|. In this regionGii(«w)  tions for all the frequency content of the input signals only when

is composed ofn replicas ofG).(w), the Fourier transform of /i an integer, implying that this is a necessary condition
thekth output signal, shifted in frequency by multiplescoi.e., for reconstruction.

o ol Supposél{/N is notan integer butthait < M/N < m+1,
Gilw) = > Z Gr(w +ic), we|[-B,—B+c¢. (2) wherem is an integer. As we sample, say,_the output signal
i=0 gr(t) at everyT’ = Mx/NB, we get an aliased (sampled)

) N . signal whose period in the frequency domain is BN/M .
Since Gi(w) = 35 Hu(w)Fi(w), where Hyy(w) is the  again we choose as the basic period the intepvaB, —B +
(k, [)th component of the MIMO system transfer matiw), a5 /A7) This interval can be further divided ¥ intervals of

we have size2B /M each. We see that in the fils¥ mod V) of theseV
e Ml N intervals, the Fourier transform of the sampled sigd#é.) is
Gi(w) = o Z Z Hy(w +ic)fi(w+ic).  (3) composed ofn + 1 replicas ofGy(w), whereas in the rest of
i=0 i=1 the N — (M modN) intervals, there are onh replicas. This
This is true fork = 1, 2, ---, M, and therefore, we may situation is illustrated in Fig. 2 for the cagé = 2, M = 3.
write, in a matrix form For the frequencies where there are ofilyreplicas, we have

. M equations (an equation for each output signal)y#a¥ un-

G*(w) = 2—T(w)F“(w) we€[-B,—B+¢ (4) knowns (the unknowns are th& replicas of each of theV
4 input signals). Becausé& N < M, there are more equations
whereG*(w)! = [G¢(w), G§(w), -+, G%,(w)], F*(w) is the than needed for a solution in this interval. This means that we
M-dimensional vector somehow wasted samples in this frequency interval, which will
cause a shortage of samples for the other frequency intervals (re-
Fi(w)! =[Fi(w), Fi(w+c), -, Fi(w+ (m—1)c) call that the total sampling rate is exacflj times the Nyquist

cooy Fy(w), -+, Fn(w + (m —1)c)] (5) rate). Indeed, in the frequency intervals where thererare 1
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replicas, we havém + 1) N unknowns but only}/ equations, Gi(w+c) Gi(w)
and sinceM < (m + 1)N, the set of(n + 1)N equations \ Gi(w = ¢)
does not have a single solution, but there is a space of many / / /
possible solutions. Since it is assumed that no known functional——" | L
dependency between ti¥éinput signals exists, there are no ad- | ]
ditional conditions to determine a unique reconstruction of the -B/3 (') B/3 B v
input signals. In summary, we do not have enough information ] ]
to reconstruct the input signals in this case, whef&V is not 2 replicas | 1 replica
integer, and all outputs are sampled at the same rate. <— 2B —>— 28 —>
B. The VSE Interpolation Formula <— 28BN =1 period—

In this section, we provide the explicit interpolation formula 5B

for the case wherd//N = m is an integer, and reconstruction
is possible. This derivation resembles the technique used in L4J _ , _
d 6] ig. 2. Components of thah output channel in the frequency domain when

and [ L . . . ] N = 2andM = 3.

The first step is to write an explicit expression for
t;e Input s;?gnalfi(t) n tlerms Ohf. ':]S aha;ed pl;)n;pogentsm the GSE case, and therefore, the number of equations is re-

i(wl))’ o Fi(w + (glf_ )), g 'Cé as ef_ﬁ” €d abovVe.y,ced by a factor ofV, i.e., there are onlyn = M/N equa-
cr?m_ € reco:strgcte m; < [f_ ’ _I +dC]. ) enl, Wi use ti(%:s. The missingM — m) equations are obtained by forcing
t € wgerse ourier transform formula and a simple change output of the reconstructétth channel to be independent on
variables to write the other( V —1) input channels. These equations correspond to

I :
= —/ Fy(w)e!*t dw
271' _B

m—1

1 —B+ke+tc )
= —/ Fi(w)e @ dw
k=0 2n — B+ke

fi(?)

1 —B+-c )
= — / Fi(w + ke)e? @Rt g, (7)

This relation can be expressed in termdUf(w), which is the
vector defined in (5), i.e.,

—B+c
fi(t) ! / E;()TF*(w)e’™! dw (8)

:% s

whereE;(t)? is an M-dimensional vector whoskth compo-
nent is nonzero and equal&§*—1—"{=1)<t gnly in the region

(i = m < k < im [i.e, at this region, it takes the value
1, edet, ... edm=1)et] anditis zero elsewhere. Note that sinc

T = 2n, E;(t) = E;(t — nT) for any integem, i.e., it is peri-
odic with periodT’, whereT = M= /NB.
We now define a set af/-dimensional vector¥ ; (w, )T =
Y 1(w, t), ---, Y pm(w, t)] as the solutions of
T(W)'Yi(w, t) = Ei(t)

wel[-B, =B+ (9)

Sés periodic int. Now, the Fourier transform of the sampled signal

the (M — m) zero components d&;(¢). The GSE is, of course,
a particular case of the VSE wheévi = 1.

SinceE; ()T = Y;(w, t)TT(w), and using the relation (4),
(8) becomes

~—B+4-c
fi(t) ! / Yi(w, )T (w)F*(w)e’™t dw

1 —B+e )
== / Yi(w, ) G*(w)ed* dw (12)
cJ-B

which is the interpolation formula expressing the input signals
in terms of the Fourier transform of the aliased sampled signals.
To get a formula in the time domain, we define the signals

1 —B+c )
yi,k(t) = —/ Y i(w, )’ dw. (12)

cJ_B

Note thaty; (t) is not periodic, despite the fact thif (w, t)

Is given by

o

Z gr(nT)e T,

n=—oo

Giw) = (13)

Thus, substituting (12) and (13) in (11) and using the fact that
Y ;(w, t) is periodic int with periodZ’, we get the interpolation

whereT(w), which is defined in (6), is assumed to be invertibl(gOrmUIa in the time domain

at eachw € [-B, —B + ] to assure reconstruction. Note that

sinceE;(t) is periodicY ;(w, t) is also periodic irt with period
T.

M =)

Z Z ge(nT)y; 1t —nT)| .

k=1 Ln=—0o0

fi(t) = (14)

Equation (10), shown at the top of the next page, is a more dgyis equation describes a sumidfconvolutions of thélf sam-

tailed representation of (9). The x M matrix T’(w)? is com-
posed ofV matrices of sizen x M. Theith matrix, which cor-

pled sequences with the signals:(¢), which are calculated by
(12) from the vector¥ ;(w, t) that depend solely on the MIMO

responds to the: equations for which we have nonzero valuegysiem via the relation (9).
in E;(t), is similar to Papoulis’ original system of equations, \we can write this result in a matrix form as

only that Papoulis’ matrix is of siz&f x M. The reason is that
in our case, each output channel is sampletimes faster than

J(@) =y(t) xg°(t) (15)
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[ Hy(w) Hj(w) e Hy(w) 17T i
Hyj(w+c) Hy(w+¢) Hy(w+co) 0
Hii(w+ 2¢) Hy(w+ 2¢) Hyi(w + 2¢) 0
Hiy(w+(m=1¢) Hu(w+m-1¢) - Hy(w+(m—1)c) )5; 1w, ? 0
Hip(w) Ha(w) aE Hppo(w) w2l ) 1
i ) ) _ e]ct612ct (10)
Hus(w+(m—1)6)  Hos(w+ (m—1)¢) - Hym(w+ (m— 1)) | | 22D et
; : : 0
Hyv(w) Haw(w) 3 Hyun (@) )
LHin(w+(m —1)c) Hon(w+(m—1)c) -+ Hyn(w+(m—1)c)] L L |
where g*(t)" = [g¢(t), ---, 95, @), g2(t) = >.o—__  in[10]. The PR condition mentioned in [8, eq. (64)] and [9, eq.

g (nT)6(t — nT), y(t) is the matrix of signals whosg, k)th  (8)] is a particular case of a discrete VSE fér= 1.
component isy; (t). The symbolx in (15) means that Itis also shown in [10] that the PR condition of the discrete
convolutions are performed instead of multiplications in theSE is a special case of the continuous frequency domain so-

matrix-vector multiplication. lution given by equation (17), in which the filters of the MIMO
system are periodic i with periods of2B. Thus, the contin-
C. Frequency Domain Solution uous case is more general.
Brown [7] showed that the Fourier transform gf(¢), i.e., Purely speaking, in the discrete time world decimation is only

the frequency response of the filter that operate orkthaetput by aninteger factor, and therefore, in the accurate discrete equiv-

in a GSE reconstruction system, can be found directly, withoglent to the VSEM/N is integer. Thus, the problem of nonin-

calculatingY; (w, ¢). We derive a similar formula for the VSE. tegerM /N and other issues discussed in the paper are relevant
We denote the Fourier transform gf ,(¢) by P, ,(w). We only for the continuous-time case.

also define the matri®(w), where thék, (i—1)M/N+I+1)th

component ofP(w) is P; x(w + l¢). This is a slice of width: E. Stochastic Signal Case

in w of the Fourier transform af; 1(¢) of (12), which is shifted  \We now discuss the interpolation formula for the case where

left in w by lc. A closer look shows that we have the inputs areN bandlimited wide-sense stationary (WSS)

processes;(t), ¢« = 1, ---, N. We can reconstruct the input

processz;(t) by using, e.g., (14). The reconstructed input

xF'(¢) will be equal in the mean square sensextdt), i.e.,

E{|z;(t) — 27 (t)|*} = 0. To prove that, we derive the inter-

2w polation formula (14) using another technique that enables the

T _ “7 -1
Plw)” = c Tw) (7) analysis of the stochastic signal case. This technique follows

F'(w) =Pw)'G"(w) we[-B,-B+d. (16)

Using (4), we immediately see that

which is a frequency domain reconstruction formula similar tlgavp\)/ou:;s [.l]’[i]’ [Ill]k.' ‘(9 i valent (10
Brown’s formula. Note that the Fourier transforms of the recon- ¢ 2€diN By 100KINg a (9) or its equivalent (10), corre-

struction filters can be found directly from the columns of thgpondlng fo the recanstruction of thith input signal. The

inverse of'(w)”". We use this representation later on in sedratrix equation (19) can be divided M groups O,f.m equa-
tion V for noise sensitivity analysis. tions. Theuth equation of theth group in case # ¢ is

M

D. The Discrete Signal Case Z Hyg(w +uc)Y; p(w, £) = 0 (18)

The discrete equivalent to Papoulis’ GSE is the “alias-free k=1
QMF bank” or the “perfect reconstruction QMF bank,” which
have been discussed by many [8]. This equivalence has been
lized by Vaidyanathan and Liu [9], who developed, for exampl€,
sampling theorems for nonuniform decimation of discrete tinféSe where
sequences. This resembles using the GSE to prove Yen's peri- M
odic nonuniform sampling [16]. A similar perfect reconstruc- Z Hyi(w + uc)Yi p(w, t) = et (19)
tion (PR) condition for the discrete VSE case has been derived Pt ’

perex =0, ---, (m—1),q=1, ---, N g # 4. This equation
us corresponds t& — 1 groups. As for théth group, i.e., the
= 4, thewuth equation is
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where againg = 0, ---, (m — 1). We first discuss (19). The For the case where the inputs avebandlimited wide-sense
signalY; »(w, 7)e?“7, in the interval[— B, —B + ¢], consid- stationary (WSS) processes(t), i = 1, ---, N, (22) still de-
ered periodic inv with periode, can be expanded into a Fourierscribes two LTI systems. We recall that two linear systems that
series. Using (12) and the periodicity¥f »(w, 7) in 7, we see have the same frequency response and are fed by the same ban-
that the coefficients of the expansion areghe (v —n7")’'s. We  dlimited WSS input generate two outputs that are equal in the
can therefore write mean square sense ([11, eq. (11-126)]). Specifically, if a WSS
oo processes;(t) is the input to the two systems described by (22),
Yi x(w, )i = Z i 1(7 — nT)e?" T (20) ]'Ehe two outputs will be equal in the mean square sense. There-
oo ore

Z gri(t + D)y, w(r — nT)

n=—0o0

corresponding to the choige= ¢ by ¢/“™ and using (20), we @it +7) = (28)

We now replace by 7 in (19). Multiplying them equations s i l
have newn equations k=1

v - where gx;(t) (which is now a WSS stochastic process) is the

‘ ‘ _ JonT _ _j(wtuc)r output of thehy; (¢) LTl filter fed by z;(¢), and the equality is in
Z Hyi(w +uc) Z vik(r = nT)e ¢ ' the mean square sense. Using this reasoning, and following the

M=t e (21) derivation of (27), we also get
This is true foru = 0,---,(m — 1) and for every Vo
w € [-B, =B + ¢]. Using the identitye/«"? = ¢i(wtue)nT (e (4 0Ty (T —nT 29
and substitutingw -+ uc) for w, for everyw, we conclude that b+ kz::l n;oo gt +nDyi.u(r =nT)| - (29)
thesemn equations may be represented by a single equation that
holds in the entire intervd B, B]. Thus, we have where the right-hand side i (¢ + 7), which is the reconstruc-
tion of z;(t + 7). Choosingt = 0 and exchanging with ¢
M nd onT . concludes the proof for the stochastic signal case.
Z Hyi(w) Z Yi k(T — 0¥ =77 (22)
k=1 n=-—oo

I1l. N ONEQUAL UNIFORM SAMPLING

for everyw € [-B, BJ. The right-hand side of this equation |n this section, we consider the case where we sampletthe
is the frequency response of an LTI system correspondingdgtput of the MIMO system every, = m;T’, wheremy, is a
a time shiftr. The left-hand side is a sum of terms of the formational numbern; = ax /by, and where;, andb, are rela-
Hyi(w)yi, x(r—nT)e?*"T. Eachtermis the frequency responsgyely prime, i.e., GCay, bi) = 1, where GCD is the greatest
of an LTI system, whose response to an ingi(t) will be  common divisor, and whefE = = /B. This s depicted in Fig. 3.

gri(t +nT)y; r(r — nT), where The total sampling rate & times the Nyquist rate, i.e.,
gri(t) = hes(t) * fi(t). (23) M
N=>" . (30)
Thus, with an inputf;(¢), we get from (22) in the time domain =1 Tk

We definem as the least common multiplier (LCM) of thg's
(24) and, as usual, denote= 2B/m.
The period ofG¢(w) in w is ¢, = 2B/my. The choice of
m as the LCM of thex;’s assures that; is an integer mul-
tiple of ¢. This means that in th&th output channel, we have
s = cr/c = m/my intervals of size: in one period. For each
, q#1i. interval, we can write one equation in the frequency domain that
can be transferred to € [—B, —B+¢| by change of variables.
(25) Therefore, the total number of these intervals is the number of
From the definition of the MIMO system (1), we recall that  equations available. As can be seen below, this numbeNs

M (a9}
fit+7) = Z [ Z gri(t + 1Dy, w(7 — nT)

k=1

n=—o&

For the cases whekg# i, we get that

0= Z [ Z Grq(t + 0Dy k(7 — nT)

k=1

n=—oo

N N M M Moy
gk(t)zzhkq(t)*fq(t)zzgkq(t)~ (26) Zsk:Z ﬂzmz — =mN.
7=l ¢=1 k=1 =1 T =1 |k

Adding (24) to theV — 1 equations of (25) and using (26), weWe havem such intervals in the whole bandwidth B, B] for
get all of the IV input signals. The Fourier transforms of thesé&/
intervals are the unknowns. Therefore, we have a systenrof

M [e9) . . .
‘ _ ‘ _ equations and: N unknowns. If the matrix@(w) representing
filt+7) = ; n;m gk(t 40Ty k(r —nT)| - (27) this system is invertible in € [-B, — B +¢|, we can uniquely

determine théV input signals. Fig. 4 demonstrates the intervals
Choosingt to be zero and exchangingand¢ leads to the inter- (unknowns) and the equations in a specific exampl& of 2,
polation formula (14). M =4,my =4/3, my =3/2,m3 = 3, andmy = 4.
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N=2 M=4
—4_12
m=3=%
12
11
10 X 7 8 9
l 6
1 ! 3 4 S T |
1 ' 2 ! 1 ! ' : I
J } ]
w
I 1T 1 T 1 1
-B
[ S =9 (i.e., there are 9 equations from this channel.)

; \ o0 AD 3
. . . . 7
Fig. 3. VSE system using nonequal uniform sampling. m 5 6 :
T i ! : |
I E

Note that as we already know, in some sampling combini  _p -
tions such as sampling all outputs, evéfyr /N B, whereM /N “This equation 5=8
is not an integer, unigue reconstruction is not possible. In the includes intervals #3 and #11
cases, the matri¥’(w) is always noninvertible, no matter what
systemH (w) is used. .
From the analysis done for the expansion by an integer fact . 1
we realize that the general rule for unique solution is that equ 2 P . T
tions should not be wasted. This general rule leadstothefc I T T T T T 1
lowing two equivalennecessaryonditions for unique recon- S3=4
struction.

i) Forany possible set of equations, the number of equatio
in the set must be less than or equal to the number of ¢
the unknowns appearing in these equations. me=1=4§

i) For any possible set of intervals (each representig I | ] I I I i I w
unknowns), the number of unknowns in the set (whichi  -B
N times the number of intervals in the set) must be less
than or equal to the number of all equations in which one 4 4
or more of these intervals appear.

Condition ii) is clear. If we have a set & unknowns that . e ) _
appear only inL < K equations, we cannot have a unique so- 1here is yet another possibility. It is shown in the Ap-
lution for these unknowns. Similarly, condition i) is clear. SincBendix that determining whether a unique reconstruction is
the total number of equations and unknowns is the samé possible, i.e., whether the matriK(w) is invertible for all

then if we have a set of. equations in which there are only” € (=B, =B + ¢, is equivalent to the problem of perfect
K < L unknowns, we must have, in the rest of theN — L) matching in a bipartite graph. The graph nodes are the rows

equations(mN — K) > (mN — L) unknowns, for which we and the columns of thénN) x (mN) matrix T'(w), and the
cannot have a unique solution. edges correspond the nonzero elementE(af) that represent
In addition to these conditions, for unique reconstruction, tf€ m{V equations ofmN" unknowns described above. The

matrix H(w) should be such that the determinant of the resultiff'fect matching is a well-known combinatorial problem. This
matrixT'(w) is not zero for every € [~ B, —B-+d. Intuitively, problem is equivalent to the Hatharriage problemto which

in this case, the samples of thé output channels are consig-Hall [12], [13] provided necessary and sufficient conditions.

ered to be “independent.” Such a matfiw) can always be These conditions can be verified using the “Hungarian method”

found when the conditions above are satisfied, and therefoP4<@nig and Egervary, which re_quiré%((mN)?’) operations,
even byO((mN)>/?) operations of Hopcroft and Karp

these conditions are essentially necessary and sufficient in He ) s
sense that this sampling combination allows a unique recdpl O Even [15]. This approach has the additional advantage

struction. Note that if the conditions above are not satisfied, th}ft the guestion of whether or not unique reconstruction is
for any choice offf (w), the determinant df(w) is zero. possible can be answered without choosing specific values for

Unfortunately, the benefit of the conditions above can somiie MIMO systemH (w). _ . .
times be limited. It is true that in some cases, we can verify Although we cannot specify explicitly the exact condition for

immediately that the necessary conditions are not satisfied HPWing reconstruction that can be checked easily, we provide
rule out a specific sampling combination. However, if the sanf€!OW & S|rr?plesuf_'f|C|ent conditionThis condition implies that
pling combination allows a unique reconstruction, we WouIWhen allm,’s are integers, we can have a unique reconstruction.
have to check alt™ possible sets of intervals to see that nei- o i ] )

ther choice violated the second condition above. A better wdy, A Sufficient Condition for Unique Reconstruction

in this case, would be to find the determinantf.), which We start with the setR consisting of all the intervals
requiresO((m NN )?) operations. 1, 2, ---, m. For this set, the number of equations:igv, and

S4=3

Intervals and unknowns in nonequal uniform sampling.
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the number of unknowns is alseV. We now split this set into Here, we see that (32) is not satisfied, e.g. et 2. However,
two setsR and@ having(m — ¢) andgq intervals, respectively. calculating the determinant of the appropriate maffigshows
We denote the number of all equations includordy intervals that a unique solution is possible.

belonging to the sef) as Ng. Let us now find an upper limit

for Ng. Itis clear that in a channel where;, > ¢ + 1, there B. Interpolation Formula for Integem;.’s

are atleas +1replicas, i.e.g + 1 intervals, in every equation.  |ntegerm,’s allow reconstruction. We now present the asso-
Therefore, in all output channels having, > ¢ + 1, we have gjated interpolation formula. We first note that for eveid >
no equations including only intervals from the &gt N, we can always choose;, = 1fork =1, ---, N — 1 and

In a channel withn,, < ¢+1, we have at leagtm, | replicas ., — pf — N 4+ 1for k = N, ---, M. Since these choices
in all the equations. This means that it might be possiblgyisfy (30), it means that we always have at least one sampling
to choose sucly intervals so that we will haveg/[mi]|  combination allowing reconstruction in which the sampling pe-
equations, which includes only intervals belonging to the sghgs are integer multiples of /B for everyM > N.

Q. Therefore When sampling afi /my, the Nyquist rate, i.e., at a sam-
q pling period of T}, = myn/B = miT wheremy is an in-
Ng < Z {WJ - (31) teger, we get aliased versions of the output signals, which, at
my <q+1 » the frequency domain, are periodic with a periqd= 2B /my,.

This is an inequality because there is no guarantee thag th¥/e could perform the same analysis as in the integer expan-
intervals chosen for the sé&t will fit all, or even any, equation SIoN factor case. However, such an analysis leads to a relatively
in all channels havingz, < g + 1. complicated interpolation formula. Thus, we use a different ap-

The condition proach that res_ults in a much simpler interpolation formula. In-
stead of sampling thgth output channel every;, we stagger
Z { q J < gN; 1<g<m-1 (32) thekthoutput, ie., fir§t split it intos, = m/mk idlentical
&y channels and then shift backward thle duplicated signal by
) ficient dit low ) ution. This i (i — DT = (¢ — )mu(w/B). We therefore get a modified
is a sufficient condition allowing a unique solution. This is s ; _ M T
becauséVg, which denotes the number of remaining equatioR/”IVIO-SyStem havingnly = 3., i OUEpUTS, as in Fig. S.

Ry i : k "Sampling each output signal of the modified MIMO system at
after removing theV, equations that include only intervals tha%ampling periodnT = mr /B is equivalent to sampling theh
belong to the sef, satisfies output channel everj,.. This modified system ha¥ inputs and

No—mN — N mN outputs. Therefore, we get an integer expansion factor, for
r Q which we had already found the interpolation formulas; see (9),

my <g+1

>mN - Y { 4 J (12), and (14).
my, <q+1 L] Let us now describe the system of equations resulting from
>mN —gN the modification of the MIMO system mentioned above. First,
=(m— q)N (33 We denote by7"(w) them N-dimensional vector given by
which is actually condition ii) mentioned above. G W) =[G1 1(w), G 5(w), -+, GY ,, (), G 1 (w)
Suppose that at,’s are integers. Therefore, we have G5 o(w), -+, Gy o, (W), -+, Gy 1 (w)

> |- = |4 2@). o G, ()] (@)

mu<g+l my<q+1 i.e., itslth component i+ ;(w) for I < s1, G§ ;. (w) for
< Z q 51 <1< 851+ 89 anng}l_”k (w) for vy, < 1 < vy, + sx, Where
mp<gt1 o1
M M
q 1 v = Z 843 sp=0 (36)
< — = — =¢gN. (34
< ; = ; - =aN. (34) part

andGy, ;(w) is the Fourier transform ofi.(¢ + (I — 1)) when

This implies that choosing integet;’s allows a unique recon- 7
itis sampled everynT (I =1, -+, sg).

struction. h X
The fact that unique reconstruction is possible for integer 1 "€MN: We write
my'S can be shown in another way. In this case, we can choose ,,, \ ¢ "
H(w) so that one of the representationdtf.) is a doubly sto- (w) = o T(w)F*(w) w€l[=B, -B+d (37)

chastic matrix. A doubly stochastic matrix is a convex combina- .. . .
! X oYy ! X! Vex ! vyglereF“(w) is identical to that of (5) and whefE(w) is an

tion of permutation matrices, and therefore, a perfect match 7 N matrix whosei. o\th tis gi by (38
possible in the bipartite graph associated with the méffig). ™Y X m4Y Malrixw os€(z, ¢)th component s given by (38)

As noted above, this means that unique reconstruction is po
sible.

An example showing that (32) is not a necessary condition is
the case ofV = 1, M = 2, wherem; = 8/5, andmy = 8/3. v <t < vp+ 8, we[-B, —B+¢. (38)

%;iq(w) :Hk, [a/m] (w + [(q - 1) InOdm] ) C)
3 ej(w—l—[(q—l) mod rn]c)(i—'v;\,—l)Tk
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Fig. 5. Modifying the system for integen,.’s.
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In order to get a simple interpolation formula that resembles
(14), we define

Y, k(t, n) = yi,'vk—l—(n modsk)+1(t =+ (n mOdSk)Tk) (41)
and then we can write the interpolation formula
M (a9}
fi(t) = Z Z gi(nTi )y, k(t — nly, n) (42)

k=1 Ln=—00

C. An Example

Using the condition of (32), we can easily verify that the
sampling combination oV = 2, M = 3, andm; = m,
mo = m/(m — 1), andmg = 1 allows a unique solution for
every integern, which is greater than or equal to two. The fol-
lowing example for the case 8f = 2 andM = 3 demonstrates
that we can apply the interpolation method described in the pre-
vious section to reconstruct the input signals, althoughth's
are notintegers. The blocks described in (39) will still be of size

Thus,T(w) is made ofM x N blocks of sy x m each. The s, x m, wheres;, = m/my,.
(k, Dth block is described in (39), shown at the bottom of the In our example, we havl (w)

page.
Note that ifdet{T(w)} # O0forw € [-B, —B + ], we

can reconstruct theV input signals from the samples of the
M output channels of the original MIMO system. According

to (9), (12), and (14), we can find thg . (t)'s, whereq’ =

1, ---, mN. The interpolation formula is
mN =9}
fi(t) = Z [ Z gy (nmT)y; o (t — nmT)
¢’'=1 Ln=—0o0
M k (a9}
-3 5[5 nta-vmsan
k=1 g=1 [n=—0

: yi,'vk+q(t —nmT)

M s =9}
= [ Z gx((q — DTk + nsiLx)
k=1 g=1 Ln=—0o0
Y, vp+q(t — nspTy)
M oo
_ [ S gy
k=1 [n=—o0

“Yi, v+ (nmod sy, )+1 (t + (7’L mod Sk)Tk - nTk)

Hy Hys
H(w) = H21 . GJwT H22 . CJwT (43)
Hy, Hyy

whereH;, Hi2, Hs1, and Hs, are constants, aril = 7/ B.

We choose to sample the first outgutt) everyT’, the second
outputg: () every3T’, and the third outpujs(t) every(3/2)T,
ie.,mp = 1, mg = 3, andms = 3/2. In this case, we have
m = 3andc = 2B/3.

According to (38)7°(w) is given by (44), shown at the bottom
of the next page. From (9), (12), and (44) we find (44a), also
shown at the bottom of the next page, where

Hyy

K, =

YT Hy1Hyy — HypHyy
—H

KQ 12

© Hyi1Hyy — HioHop

Note that the right-hand side in the first three equations in (44a)
is the Sinc functionsin(Bt)/ Bt multiplied by K; and cen-
tered at 0,77, and27’, respectively. The right-hand side in the
last three equations equals Yen's [16] reconstruction filters for
periodic nonuniform sampling witd; = 7', 7, = 0, and

T5 = (3/2)T, multiplied by K,. This is not surprising since
the modified system in this specific example can be represented
by a 2 x 2 matrix of

[Hn Hu}
(40) Hy Hy
Hig(w) Hy(w+c) Hy(w+ (m —1)c)
Hkl(w)eijk Hy(w+ c)ej(m—c)Tk Hy(w + (m — 1)c)ej(w+(m,—1)c)Tk
Hkl (w)eju:QTk Hkl(w + c)ej(u:-l-c)QTk Hkl (w + (m _ 1)c)ej(w+(m,—1)c)2Tk (39)

Hkl(w)ejw(sk—l)Tk Hkl(w + c)ej(w—l—c)(sk—l)Tk

Hkl(w + (m _ 1)c)ej(w+(rn—l)c)(sk—l)TA,
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followed by uniform sampling of one output and periodic
nonuniform sampling of the other output. Therefore, the
Sinc function reconstructs the first output, Yen's functions
reconstruct the other output, and then, we use the inverse of the +

+

n

g2(n3T)1, 4(t — n3T)

NERINIL

3
g3(n=T)y 5(t —n3T)

matrix to reconstruct the two inputs, which is equal to the mul- s 2
tiplications by the factors mentioned above. The reconstruction 00 3 3
filters for the second input are similar but with the factors of + ga <§ T+n 5 T) 1,6t —n3T). (45)
—Hx Using (41) we find
Hi1Hy — HipHy .
Bt)
and vt n) =K sin( 46
H,, u1,1(t, n) = K1 BtB . (46)
HiyHyy — Hi2Ho sin| —(t—T)) sin| —¢
(t,n) = K S S (47)
Without using the combination suggested in (41), the inter- 1,240 ) =2 B BT
: - —@t-T)) cos|—
polation formula is given by 3 6
. (B B T
- sin 3t cos 3 2t—§
fl(t) = Z g1 (713T)y17 l(t - 7’L3T) Y1 3(t, 7’L) =K
oo ’ B BT
—t 2cos| —
s 3 6
+ Z g1(T +n3D)yr, 2(t — n3T) . <QB t)
n=—oo s | ——
1
°<> 5 () s (48)
+ 3 (2T + 3Ty, a(t — n3T) 2 2 cos (?)
T(w) =
[ Hyy Hyy Hyy Hi» Hi» Hi, i
Hy - edeT Hyy - edletaT Hy; - edwt2aT Hipy - edeT Hypy - edetaT Hips - /@ t29T
Hyy - 2T Hyy - ej2(u;-|—c)T Hyq - ej2(u;-|—2c)T His- ed2wT His- ej2(u;-|—c)T His- ej2(u;-|—2c)T
Hyy - /T Hyy - i@taT Hyy - ciwt29T Hyy - ¢i<T Hyy - i@l Hyy - i (@t29)T
Hy Hy Hy Hy Hy Hjo
| Hyy - 3G/2eT o i@/l o oiB/(e20)T oo oi3/2eT fo, . i3/l o, . oi(3/2)(w+20)T |
(44)
sin(Bt) sin(B(t — T)) sin(B(t — 2T))
y1,1(%) L " B¢ y1,2(t) L Bt —T) y1,3(t) L B(t — 2T)
B B 3
sin <—(t — T)) sin <—(t — O)) sin <— <t - = T))
3 3 2
yr,a(t) =Kz B 3 B
sin| =—(T—-0))sin| = |T-=-T))=0t-T)
3 2 3
B B 3
sin| =@ —-T))sin{=(F—0))sin| = (t—=T
3 3 2
y1,5(t) =Ko 5 3 -
B B 3
sin <— (t—T)) sin <§ (t—10) ) sin <§ <t— §T>>
v, o(t) = Kz 3 B (3 B/ 3 (442)
sin| =(=T-T}})sin|=|=T-0 —|t—=T
2 3 \2 3 2
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and therefore, we get the final interpolation formula

L) = Z g1(nT) - y1,1(t — T, n) - T ﬂ/\

n=—o00 T T 17 171 T 71 t

> NT NT
37) - t —n3T,
+ n:z_:oo 92(n3T) - y1,2(t — n3T, n) T T
+ Z g <n i T) 3 <t o n) (49) Fig. 6. Simple periodic nonuniform sampling.
= 2 2
we[-B,-B+] (53)

which of course is equal to (45).
i.e.,T(w) is made ofM x N blocks of N x M each, where the
IV. EQUAL PERIODIC NONUNIFORM SAMPLING (k, Dth block is described in (54), shown at the bottom of the

Another possible solution to the case wh&féN is notan in- next page. Wherdet{T(w)} 7&.0 for we [-B, —B +d, we.
can uniquely reconstruct th¥ input signals from the nonuni-

Feger, Is to employ nonuniform sampling. The ;implest SCh?rPoerm but periodic samples of the original output channels.
is to sample each of th& outputs at the Nyquist rate, but in Let us now use (9), (12), and (14) to find the, (£)'s, where
1 L 7(1 1

each of the channels, use only the fildtsamples from every

set of M samples and delete the remainiij— N samples, as ¢~ 1, .-, MN. The interpolation formula is therefore de-
; - scribed by
depicted in Fig. 6.
Similarly to Section 111-B, we first split every output channel MN T oo
to IV identical signals and then shift backward (in time) ttre fi(t) = Z l Z 9 (NnMT)y; o (t — nMT)
duplicated signal byi — 1)T" = (i — 1)x/B. We therefore get a 7'=1 Ln=—oc0
modified MIMO system havingd/ /V outputs. If we now sample M N o0
each output signal of the modified MIMO system at sampling = Z Z l Z g((q— )T +nMT)
periodMT = M (x/B), itis equivalent to sampling every orig- k=1 ¢=1 Ln=—0c0
inal output channelN samples at Nyquist rate (sampling period
of T = w/B) and then waiting for a period dff — N samples " Ui, (k=1)N+q(t — nMT)
before sampling again, which means an average sampling rate u
of N/M times the Nyquist rate. This modified system hés i n
input/s andM IV outputs. Again, as in Section IlI-B, we reached - ; [ > o ((” mod N)T'+ LNJ MT)

a situation of an integer expansion factor, for which we had al-
ready found the interpolation formula.

Let us now describe the system of equations for the modi-
fied MIMO system. We denote b&*(w) the A N-dimensional
vector given by In order to get a simple interpolation formula that resembles

(14), we should unite th& y; ,(t)’s for (k —1)N < g < kN.

Ga(w)T = [Glll, l(w)v G(f, 2(“")7 T G(f, N(w)v Gg, 1(“") We now define

“Yi, (k—1)N+(nmod N)+1 (t - L%J MT) . (59)

G5 o(w), - G5 N(w), -, Gy 1 (w)
a7 ; ’ Yi, k(tv 7’L) = Y, (k—=1)N+(nmod N)+1 (t) (56)
1\4,2((*‘))7 Tt GM, n(w)] (50)
. its Ith tisG (), wh and denote
ie., its component isG“ w), where
[1/N7, (1—1) MOdN+1 n
G (w) is the Fourier transform ajy.(t + (I — 1)T") when it gkn] = gr ((” mod N)T + LNJ MT) ~ (57)

is sampled every/7 andl =1, ---, N. ) ) ] . .
We also denote b (w) the M N-dimensional vector given Using this, we can write the interpolation formula
by

M (a9}
Fow)' =[Fi(w), Fi(wte), -, Fu(w+ (M — 1)) Ji®) = z_:l LZOO gl (0= | 7 | T n) | (59)

k_ ), -
o Ivw), s EnwH (M=) G A gimiar analysis can be performed when tNesampling
wherec = 2B/M. Therefore, we have points are located arbitrarily along the intervdll” at locations
T;,where0 < T; < MT,andi =1, 2, ---, N. If this is the
c T(w)F*(w) we[-B,-B+c (52) case,theonly modificationinthe matflXw) is that the blocks

2m described in (54) will be as in (59), shown at the bottom of the
whereT'(w) isanM N x M N matrix whos€¢, ¢)th component next page.

()

is given by It can be easily verified that when tHE's are chosen to
be (M/N)YI = (M/N)(x/B), i.e., uniform sampling, the re-
Tig(w) = Hriyn, rg/a0 (@ + [(g — 1) mod M] - ¢) sulting matrix7’(w) is noninvertible when\/ /N is not an in-

. od(wtlla—1) mod M]-¢)[(i~1) mod N}z /B teger.
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V. NOISE SENSITIVITY OF VSE SrSTEMS value, which is added to theth sample of théith channel by

The analysis conducted so far assumed that the sample vaIYfé%LT)' where

were known within an infinite precision. In practice, we never E{vk(nT)vj; (mT)} = 026y oOn.m (60)
have the exact values of the samples due to quantization and . .
noise; therefore, itis interesting to explore the sensitivity of VS&Ndvx(nT) is a zero mean random variable.

systems. We now calculate the contribution of this noise to the recon-
The first issue is well posedness. In GSE, this problem walucted signaf7 () produced by

initially discussed by Cheung and Marks [17], who found a suf- M o0

ficient condition for ill-posedness of the system. Under their fI'(¢) = Z [ Z (gx(nT) + v (nT))yi, 1 (t —nT)| .

definition, an ill-posed GSE system produces a reconstruction k=1 Ln=—o00

error with unbounded variance when a bounded variance noise (61)

is added to the samples. Later on, Brown and Cabrera [18], [M/p Specifically want to find the value d#{|v} (¢)|*}, where

found a necessary and sufficient condition for well posedness M 00

of GSE systems. We find a similar condition for VSE, where in? (¢) = f7'(¢) — f;(t) = Z l Z ve(nT )y x(t — nT)] )

our definition, a well posed VSE system produces a reconstruc- k=1 Ln=—o0

tion error with bounded variance in all reconstructed signals (62)

when a bounded variance noise is added to the samples. Intd@wever, the signad; (¢) is not a wide sense stationary (WSS)
riving this condition, we also get an expression for the recofiilgnal since due to aliasing, it is a sumrofcorrelated, WSS
struction noise power for each reconstructed signal. This restignals, shifted in frequency. Thus, we look for the time-aver-
is discussed in Section V-A. aged valuel{ |v} (t)[2}.

The expression for the reconstruction noise level provides/nstead of analyzing the time domain expression of the recon-
a quantitative measure for the noise sensitivity of the systefifuction noise (reconstruction error) given by (62), we conduct
Using this, we can then determine the optimal VSE systems, i @Ur analysis in the frequency domain. Using (4), we can write
the systems that minimize the total reconstruction noise levBl€ reconstruction equation in the frequency domain
under some power constraints. This is discussed in Section V-B. 2 B

F*(w) = TT(w) G (w) we[-B,—-B+c. (63)

A. Reconstruction Noise Power and Well Posedness of VSExg seen from (63), every row of the matrix describes a

“slice” of
Systems

the reconstructed spectrum. Tlme(i — 1) + k]th row describes

In our analysis, the noise of the VSE system at reconstructitire reconstruction of;(w + (k — 1)c) forw € [-B, —B + (],
is a result of adding a zero mean white discrete stochastic noigeich means it describds (w) forw € [-B+(k—1)e, —B+
sequence to each sample sequence, generated by sampling¢he
M output channels, prior to reconstruction. This noise repre-We now analyze the effect of adding the uncorrelated noise
sents the quantization errors and other system inaccuracies. $amplesy;(n7T) to thelth output of the MIMO system. This
assumed that the quantization noise is statistically independsnéquivalent to adding tg;(¢), prior to sampling, a WSS sto-
of the signals and that noise sample sequences added to diffechaistic process; (), which is bandlimited taw € [—¢/2, ¢/2]
channels are also statistically independent. Denotetthaoise and has a spectral power density £f ., (w) = Ny, where

Hi(w) Hy(w+c) Hy(w+ (M — 1)c)
Hy(w)ede? Hyy(w + ¢)ed@taT e Hy(w + (M — 1)¢)ed (0HM-1oT
Hkl(w)eijT Hkl(w + c)ej(w-f—c)QT . Hkl(w + (M _ 1)c)ej(w+(1\lfl)c)2T (54)
Hy(w)e?*N=UT Hy(w 4 ¢)ed@raN=0T .. H(w 4+ (M —1)¢)ed @HM—Da(N-1)T
Hit(@)e T Hyg(w + )edHoOT . Hy(w+ (M = 1)e)eil+HM=1DoT,
Hy(w)e™*™e  Hy(w+ C)Cj(w+C)T2 oo Hpglw+ (M — 1)C)Cj(w+(M—1)c)T2
Hy(w)e*Ts Hyg(w+c)ed@toTs o Hu(w+ (M — 1)¢)d @ -1o)Ts (59)

Hig(w)e?Tn  Hy(w+ c)ed@t9Tv o Hy(w + (M — 1)¢)ed (HM-1aTx
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m

No = To? andT = M= /NB, as described in Fig. 7. The
power spectrum of the noise at the output of the system repre- Z [R“ T( M.
sented by thém(i — 1) + k]th row of T'(w) 1, resulting from

. . B+c
v (t), is given by B Z / Suror(w -+ (= 1)) do
NO 2m 2 2
Srur'vr(w + (k — 1)c)l = T <—> |11[7n(7‘,—1)+k],l(w)_1| 27I'N0 Bte M )
e (64) C2T2 / Z | Tim(i—1) 41, 1@) | dw. (70)

wherew+(k 1)cimplies that this contribution is in the interval
€ [-B+(k—1)c, —B+kd], the subscriptimplies that this is Usmgthe relation®Vo = T'o, T = M« /NB, andc = 2B/m,

the contribution of the noise coming from tkté channel only, We find that

and the subscrigtimplies that this is the contribution to tlith W

reconstructed signal. We now wish to calculate the joint contri- Be m

bution of all A/ noise sources to théh reconstructed signal. Be- _ % 12

cause the noise sources are statistically independent (and there- / Z Z |T[m(” D, @) | do. (71)

. . . . k=1 =1
fore uncorrelated), the total contribution is simply the sum of all

separate contribution$, .- (w + (k — 1)c); We nowbdenote the matrix cggnposed of the rgmsi — 1)_+
i 1], - ++, mi of T(w) ! by T(w); * so that (71) may be written
Su:u: (UJ + (k‘ — 1)6) as
M o2 Bt .
=3 S (4 (k1) E@ry =2 [ e {re)r T e
=1 (72)
No /27\? M 12 This is the general equation for the noise level atitheecon-
~ T2 <_> Z | Timti—43,1@) 7' [7- (65)  spructed channel.
=1 We denote the sum of all'{|v?(¢)|?} by o2. Using (71) we

This is the spectrum of a frequency slice of the reconstructiget

noisew! (t) imposed on théth reconstructed signal, which is ;

shifted left in frequency byk — 1)c. We denote this frequency o = Z E{[or(t)]2}
shifted left slice byv! (¢)*). Note that althoughy (¢) is not ; ot

a WSS signal, itsn. componentss! (t)*) are WSS. We now

B+4c m
calculateE{|v!(¢)|?}. The signab! (¢) is given by — Z / Z Z | T i1y (@) ™ |2 dw

m k=1 I=1

vi(t) =Y wf(Wed et o /B+c M M ,
o= == Tkl(w)fl dw
i Tr,r ¢J-B ; lz:; | |
= B(1)"vi (1) (66) . t

where =% /_ e {me) e e, (73)

v ()T = [v;’(t)(l), (@, U;‘(t)(m)} (67)  We now derive, using (72), a test that checks whether a VSE
system is ill posed or well posed. This test is similar to the one
) . . suggested by Cheung and Marks [17] and Brown and Cabrera
T jc j2¢ jm—L)e
E@)" = [17 Iot et . edm) t} (68) [18] for GSE systems. From (17), we see thatthel)th com-
ponent ofT’(w); " is
and so have ¢

. -1_°p _
B {Jo ()P} = { B o (o ()" (e} Talwh™ = gp Palot (k=la. (74)
mm Substituting in (72) [actually in (71)], using a change of vari-
= [Ryror (0)]i, /70 (69)  abless’ = w+(k—1)cand noticing that the sum of the resulting
k=1 1=1 integrals over then intervals[— B+ (k— 1)c, —B + kc] can be

where R+, (7) is the correlation matrix of the vectaf (¢). combined into an integral over the continuous intefvaB, B],

Sincec?*** is periodic int with an integer number of periods inW€ 9t
T, we have B M
ey E{lj0F} = 7 5 2 Bl de 79
E{lor@r} 4
1 [T o As noted above, a well posed VSE system is such that
= T/ E{M (t)] }dt E{|vr(t)*} is bounded for every boundea?. From (75),
OT o om we conclude, similarly to [17] and [18], that a necessary
= l/ Z Z R,T o (0)]s., jed(k=Det gy condition for the well posedness of a VSE system is that all
T 1 =1 reconstruction filtersF; ;(w) have a finite energy. It is also
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In addition, denote theM eigenvalues of the matrix

AB -+

T(W)IT(W)* by Ap(w)n = 1,---, M. Recall that the
trace of a matrix equals the sum of its eigenvalues, and there-
fa(t) +v3(8) fore
M
3 Anlw) = Qw)Mm. (80)
() +v5 () el

Now, minimizing THT(w)~*" T(w)~*"} is equivalent to min-
imizing > (1/A,.(w)). The minimum, under the constraint
thaty "M |\, (w) = Q(w)Mm, is achieved by

Fig. 7. Quantization noise in a VSE system.

a sufficient condition since we can easily see from (69) that A (W) = Q(w)m (81)
E{|vr()]?} < mE{Jvr ()2}, i.e., itis finite when theP; ;(w)
have a finite energy. i.e., all eigenvalues df (w)TT'(w)* should be equal. The min-
. M .
Using some simple matrix algebra, we get from (73) imal value of) ., (1/An(w)) is N/Q(w).

Returning to (73)

1 [7PF M(MH )20
oy <o) _/ ( : 7 dw (76) 2 21 —hte -17 —1*
¢J-B | det{T(w)}| or =0, — Tr {T(w) T(w) } dw

¢J-B

where we assume that allHd;;(w)| are bounded from | Bte M 1

above by some finite numbéel .. Under this assumption, =02 _/ Z dw

|det{T(w)}| > « > 0is a sufficient condition for well posed- ¢J-B An(w)

ness. A similar condition was found by Brown and Cabrera ,1 (7Bt N ; 62)

Z o= — dw.

[19] for GSE systems. Z0v /_B Ow)

B. Optimal VSE Systems Minimizing the ]raight-hand side under the power constraint
—B+e

We first wish to find the optimal VSE system in the sense df/™ = (1/¢) [_p " Q(w)Mm dw of (78) leads to
minimizing the total time-averaged mean square reconstruction Qw) =1 w€[-B, —B+d. (83)

errora. Later on, we will also look for systems that minimize

separatelyE{[7 ()2}, which is the noise at a specific recon-Thus optimal performance is attained by

structed signal. In order to get a meaningful answer, we need to

impose pogver constraints ogn the filters o%‘] the VSE system since Anfw) =m w€[=B, —Bd. (84)

otherwise, the components @f(w), and therefore the output The only matrix in which all eigenvalues, equal tom is

of the MIMO system, could be increased to any desired valu@l. ThereforeI’(w) of an optimal VSE system must kgm

making the quantization noise insignificant. We will discusimes a unitary matrix for every € [-B, —B + ¢]. Such a

several such constraints. system produces a total noise 8&-2. Thus, under the power
1) MinimalaZ: Consider the following power constraint onconditions of (77) or (78), we always have

the filters of the MIMO system:

o2 > No? (85)
1 B M N _ _ _ o _
M=_—— / Z Z | Hyt(w)|? dew. (77) where equality occurs only if (84) is satisfied. The optimal value
2B J_p 1 =1 of the reconstruction noisgoes notlepend onmn.
This power constraint was chosen because it is satisfied by théNe now define the noise amplification factd,
simple VSE system having/ inputs andM outputs (integer E{|vr ()2}
M/N), in which Hy(w) is e/*®medm)z/B for | = [k/m) Ay =— 57— (86)

~Aninfinite A, suggests that the system is ill posed or even that
mathig matrixZ’(w) is singular. From (85), we see that

and 0 otherwiserf, = M/N). After sampling, this system is
equivalent to Nyquist sampling of th€ input signals{ f;(¢)}
The constraint (77) can also be expressed using the

T(w) N
. Z A, > N. (87)
Mm == / Te{T ()T T(w)*} dw. (78) =1
¢J-B This means that when we demand equal reconstruction noise,

We now minimize the right hand side of (73) under the pow&" €qual noise amplification, for alV reconstructed signals, we

constraint (78). Let us start with a specific frequencand min-  98tAc; > 1. _ o _
imize Tr{T(w)flTT(w)fl*}’ which is the integrand in (73). We can also d'eter.mlne the minimal possple value of a spe-
Suppose that cific A., by considering théth reconstructed signal as coming
from a GSE system with one input add outputs sampledv
T{T () T(w)*} = Q(w)Mm. (79) times faster than necessary. Using the result above, and the fact
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that the noise is averaged over tNepossible versions of the Using the Lagrange multipliers method, it is easy to see that the
reconstructed signal, we get minimum value ofs2., under the constraint of (91), is achieved

1 only when allA., are 1. This means that improving the noise of
—. (88) a certain output leads to a higher loss in the other outputs.

N The situation discussed above can be demonstrated by the
2) Power Constraint on the InputsConsider the following following example. LetN = 10, and suppose that initially,

A, 2

more restrictive power constraint. For evérg 1, ---, N A, = 1 for all values ofl. We want to haved., = 0.5, so we
seta; to be 2. Becaust0 = 37,2, a;, we haves = 37,2, a;.
M 1 B XM If we choosey; = 8/9forl =2, ---, 10, we find that
=== Hy(w)]? dw. 89
m=o = _BkZ_l| wa(w)[? do (89)

1 1 9
02 = o2 Z — =g <§ +9- §> = 10.6302 > NoZ2.
This constraint is called power constraint on the inputs since it =1 ¥

involves all of thel filters Hy,(w) receivingf;(¢) at their input.

Note that this constraint does not contradict the previous poweJ\IOte that_ when_ (O1)is S.at'Sf'ed’ we have S.UCh cont_rol on th_e
constraint of (77). reconstruction noise even if the VSE system is not optimal. This

Under this power constraint, we can still attai = V - 02 enables control of the reconstruction quality of some of the sig-

i.e.,Z?\il A. = N. However, now, the minimal value of,. is nals at the expense of the .rest.c.)f the S|gr.1als. while keeping the
o=l : output level equal (which simplifies quantization).

1foralli. The soluti;)n that simultaneously attains = 1 also We end this section by pointing out a simple example of op-
attains the minimads.. This is shown by considering, again, thei. :
imal VSE system, withV = M = 2. LetT(w) be

1th reconstructed signal as coming from a GSE system with one
input andA{ outputs, sampledv times faster than necessary, cos a(w) —sin a(w)
but now, the power constraint on the inputs forces the power to T(w)=| . . (94)
be IV times smaller, and therefore, herk, > 1. sin a(w)  cos aw)

3) Power Constraint on the OutputsAnother more restric- SinceT
tive power constraint is “power constraint on the outputs.” Fc?r_
everyk =1,---, M

(w) is unitary, we have\; = X\, = 1 for everyw €

B, —B + ¢]. Interesting cases can be obtained by choosing
various values for(w). For example, using«(w) = 0 for

w € [-B/2, B/2], andr /2 elsewhere, leads to an optimal VSE

1 B system composed of ideal bandpass filters.
1= [ S [ Hw)? do 90) P P
28 )5 A
- VI. CONCLUSION
i.e., the same power in alf outputs. In this paper, we have shown that under certain conditions

We show that this constraint allows the attainment of the mign the sampling rates, it is possible to reconstiMdbandlim-
imal valueA., = 1/N, but the better noise amplification factorited signals, which are the inputs to a MIMO LTI system, from
of one signal comes at the expense of a worse amplification fegriodic samples of thé/ outputs of the systemi{ > N)
the other signals. We start our analysis with filtéfg(w) sat- while keeping the total rate to b&" times the Nyquist rate.

isfying We discussed equal uniform sampling, nonequal uniform sam-
pling, and equal periodic nonuniform sampling. Interestingly,
11 B H 2 ©1) for equal uniform sampling, reconstruction is possible only if
N 2B /_B | Hi(w)[ do the expansion is by an integer fact@Z{N is an integer). It is

] N - also shown that for any4 > N, there is at least one sampling
for everyk and!l. We defineN' positive amplification factors ¢ompination in which the sampling periods are multiples of the
Ve and demand that Nyquist period that allow reconstruction. In all cases, we also
derived the explicit interpolation formulas.
N The paper contains a noise sensitivity analysis, which deter-
N=) a (92)  mine the necessary and sufficient conditions for minimum time
=1 averaged mean square reconstruction error. We defined the noise

o _amplification factor, which provides a quantitative comparison
Suppose we have a system satisfying (91) and having gfl\,sg systems under a power constraint.
A., = 1. Such a system can always be found, e.g., by using

ideal subband filters. By amplifying tha&h input signal by a
factor \/a;, we getA., = 1/a;, and therefore, we can control
the noise amplification factor of each signal.

When the amplifying factors; are used, the total noise is

APPENDIX
HALL’S MARRIAGE PROBLEM, PERFECTMATCHING OF
BIPARTITE GRAPH, AND THE INVERTIBILITY OF T'(w)

As we show below, determining whether a unique reconstruc-
tion is possible, i.e., whether the matflX.) can be made in-
] (93) Vertible forallw € [-B, —B + |, is equivalent to Hall'snar-
riage theorem[12], [13]. This theorem is also known as the

N
2 =023
=1

8|~
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SDR theorem of Hall, where SDR stands for “systems of disectingS; andV;. We denote the permutation matrix b .
tinct representatives” [14], [20], [21]. The theorem deals witfihe (¢, 5)th component of4,, is one only ifo(:) = j and zero
the necessary and sufficient condition for selecting a distinatherwise.

set from the set of membels = {V1, V5, --

-, Vin} such that

We now show that a necessary and sufficient condition, al-

there is a one-to-one correspondence between each of the clawing an invertible matriXl’(w), is the existence of a perfect
ponents of the chosen set and the components of a givenreatching in the corresponding bipartite graph.

S = {51, S2, ---, Sp}, which is a set of subsets ¥f.
For example letV = {1,2,3,4,5,6} § =
{Sl, SQ, Sg, 54, S;)}, WhereSl = {2, 4, 6}, SQ = {3, 6},

S3 = {3, 5}, Sy = {1, 5}, and S; = {1, 2}. The set

{2, 6, 3, 5, 1} is a set of distinct representatives, where

* 2 represents;
* 6 representss;
* 3 representss;

It is a necessary condition since the determinant of
any matrix T of size mN x mN can Qe written as
det{T} = Eall (mN)! possible o Sign(a) H;’;]; E7U(i) (See
[14] and [24]). Thus, If no permutation exists in which all
componentd; ;) are nonzero, the determinant must be zero.

Sufficiency is easily shown since having a perfect matching
means that at least one permutation mattix (the one that
describes the perfect matching) exists, whereraN compo-
nentsT; ,(; are nonzero. If we choose these components to be

* 5 representsy;
* 1 represents.

In case we had the sets = {1, 2, 3}, 5> = {2, 3}, S5 =
{2, 4}, 54 = {1, 4},andS; = {1, 2}, we could not find a set of
distinct representative since only four element¥ gdarticipate
in S, whereas there are five setsSn

1 and the rest of the componentsitiw) to be zero, we have
T(w) = A,, which is definitely invertible.

Hall's conditions can be verified using the “Hungarian
method” of Kénig and Egervary, which requir€¥ (mnN)?)
operations or even b@((m.N)>/2) operations of Hopcroft and
Karp (see [14]) or Even [15]. This approach has the advantage

Hal's SDR theorem states that an SDR exists fdhat the question whether or not unique reconstruction is

S = {5, 8,

-, S,} if and only if every collection of Possible can be answered without choosing specific values for

k sets of S contains at least distinct members for every the MIMO systemH (w).

possible value of;, i.e., forallk =1, -- -, n (see [20]).
In other words, the union of every combinationiagets must
contain at least elements. This is a necessary condition since
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otherwise, we would not be able to assign a distinct element toThe authors would like to thank N. Alon for pointing out
every set as shown in above example. The proof that this ish& relation between the unique reconstruction problem and the

sufficient condition can be found, for example, in [21].

As noted in [22], this is similar to condition i) of Section I,
which demands that for any possible choice:afquationsf
must be less than or equal to the number of all the unknowns
appearing in thé equations. The equations are the sttsand [1
the unknowns are the components of thelset 2

The SDR problem is equivalent to the problemnaditching [3]
in a bipartite graph [14]. A bipartite graph is a graph composed
of two disjoint subsets of vertices such that no vertex in a subse
is adjacent to vertices in the same subset [23], i.e., it can b
considered as two columns of vertices. We can consider one of
them (the left one for example) as representing the$atwd the
other (the right one) as representing thelde¥WWhen discussing 5]
testing of a sampling combination, the first represents the rows
of the matrixZ’(w) (i.e., the equations), and the other represents!®]
the columns (i.e., the unknowns). An edge of the graph con-p7]
nects theth left vertex to thejth right vertex ifV; is a member
in S;. In our case, when we are testing a sampling combination 8]
an edge connecting thi¢h left vertex to thejth right vertex ex-
ists if T;,;(w) is nonzero, i.e., if thgth unknown appears in the
ith equation. A perfect matching of bipartite graph having the
same number of vertices in both sides is a matching in which all
vertices of the two sides of the graph are connected with only10]
one edge. This is similar to finding a distinct representative for
each of thes; sets of the left, in the list of th&;'s on the right, 19,
when both sets have the same number of elements. Here, we
clearly see the equivalence of the SDR problem and the perfef?]
matching problem. Such a perfect matching can be describqg:,,]
as a permutatiomr, whereo (i) = j represents the edge con-

4]

(9]

problem of perfect matching in bipartite graphs.
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