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Abstract—The vector sampling expansion (VSE) is an extension
of Papoulis’ generalized sampling expansion (GSE) to the vector
case. In VSE, bandlimited signals, all with the same bandwidth

, are passed through a multi-input–multi-output (MIMO) linear
time invariant system that generates ( ) output signals.
The goal is to reconstruct the input signals from the samples of the
output signals at a total sampling rate of times Nyquist rate,
where the Nyquist rate is samples per second. We find neces-
sary and sufficient conditions for this reconstruction. A surprising
necessary condition for the case where all output signals are uni-
formly sampled at the same rate ( times the Nyquist rate)
is that the expansion factor must be an integer. This condi-
tion is no longer necessary when each output signal is sampled at a
different rate or sampled nonuniformly. This work also includes a
noise sensitivity analysis of VSE systems. We define the noise am-
plification factor, which allows a quantitative comparison between
VSE systems, and determine the optimal VSE systems.

Index Terms—Generalized sampling expansion, nonuniform
sampling, quantization, sensitivity, signal reconstruction, signal
sampling, vector sampling.

I. INTRODUCTION

I N HIS famous generalized sampling expansion (GSE) [1],
[2], Papoulis has shown that a bandlimited signal of fi-

nite energy, passing through linear time-invariant (LTI) sys-
tems and generating responses , , can be
uniquely reconstructed, under some conditions on thefilters,
from the samples of the output signals , sampled at
the Nyquist rate. Such a sampling scheme might be useful when
the original signal is not directly accessible, but some processed
versions of it exist and may be used for reconstruction. More re-
cently [3], [4], the GSE has been extended to multidimensional
signals in which the signal depends on several variables, i.e.,

. This work provides anothervectorex-
tension to the GSE: the vector sampling expansion (VSE).

We consider bandlimited signals, or a signal vector
, all having the same bandwidth

that pass through a multi-input–multi-output (MIMO) LTI
system, as in the left-hand side of Fig. 1, to yield output
signals , where . The
transfer function of the MIMO system is denoted , where

is an matrix, and therefore, we have

(1)
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where

and , are the Fourier transforms of , ,
respectively.

We examine whether the input signals can be reconstructed
from samples of the output signals at rates that preserves
the total rate to be times Nyquist rate (the rate obtained by
sampling each of the input signals at the Nyquist rate). A VSE
system, which is described in Fig. 1, is a system where such re-
construction is possible. We will provide in this paper the nec-
essary conditions for such reconstructions in several cases. The
conditions we provide are for signals with no known determin-
istic functional relationship between them since dependency be-
tween the signals, if known, can be utilized to further reduce the
required sampling rate.

VSE systems appear in many practical applications. For ex-
ample, in a multiaccess wireless communication environment or
radar/sonar environment, we may havetransmitters, emitting

different signals, which are then received byantennas. A
question of great interest is how to sample the received signals
at the total minimal rate that will enable unique reconstruction
and how to attain the most noise-robust system. VSE systems
also appear whenever the information is represented by a vector
signal. For example, consider an RGB color image, and suppose
we use, say, four color filters to acquire it. Sampling the filters
output and reconstructing the RGB image is a VSE system. In
this example, the problem of determining the proper arrange-
ment of the filters on the sensor is equivalent to determining
appropriate sampling scheme of the VSE system.

The paper is organized as follows. In Section II, we discuss
the case of equal uniform sampling of all output channels. It
turns out, somewhat surprisingly, that there is a distinction be-
tween expansion by an integer factor (i.e., is an integer)
and expansion by a noninteger factor. When all the output sig-
nals are uniformly sampled at the same rate (which is
times the Nyquist rate), we show that reconstruction of is
possible, with some conditions on the MIMO system, if and only
if the expansion factor is an integer. In this section, we
also find the reconstruction formula and discuss the stochastic
signal case. The main results of Section II were also summa-
rized in [5].

Reconstruction is also possible when is not an in-
teger. However, in this case, either the sampling rate is not
equal for all output signals, or each output signal is sampled
nonuniformly. Uniform sampling at different sampling rates
for different output signals is discussed in Section III, whereas
periodic nonuniform sampling is discussed in Section IV.
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Fig. 1. Complete VSE system.

In Section V, we analyze the performance of VSE systems in
the presence of white quantization noise. We find the necessary
and sufficient condition for an optimal VSE system in the sense
of having a minimum mean square reconstruction error.

II. EQUAL UNIFORM SAMPLING

In this section, we discuss the case of equal uniform sam-
pling in all output channels of the MIMO system. We show
that a unique reconstruction is possible only when is an
integer. We then find reconstruction formulas for this case in
time and frequency domains. Finally, we discuss the stochastic
signal case.

A. Expansion by an Integer Factor

Consider the case where is an integer. When
sampling at the Nyquist rate, i.e., at a sampling period

( is the bandwidth), we get aliased versions of
the output signals, which, at the frequency domain, are periodic
with a period . We denote by the Fourier
transform of the sampledth output signal and observe that
since it is periodic with a period, it is sufficient to consider
only one period, say . In this region,
is composed of replicas of , the Fourier transform of
the th output signal, shifted in frequency by multiples of, i.e.,

(2)

Since , where is the
th component of the MIMO system transfer matrix ,

we have

(3)

This is true for , and therefore, we may
write, in a matrix form

(4)

where , is the
-dimensional vector

(5)

i.e., its th component where
and

mod does not divide
divides .

Finally, is an matrix whose th component
is given by

(6)

We observe that (4) is a set of equations for the
unknowns , where , and

. By solving this system of equations, we
get the Fourier transform of the input signals at all frequencies

, i.e., we can reconstruct the input signals. Note
that this system of equations will have a single solution if the
determinant of the matrix , which depends solely on the
MIMO system, is not zero for every . Many
MIMO systems satisfy this condition, but it should be checked
to determine if reconstruction is possible.

One simple example that enables reconstruction is as
follows. Let be an constant matrix of rank .
As discussed above, if this constant matrix is the MIMO
transfer function, reconstruction is impossible since at any
sampling time point, we get dependent samples. Suppose,
however, that we stagger the signals, i.e., shift theth output
signal by and then sample
each output signal at sampling period. This is equivalent
to sampling at times the Nyquist rate while multiplexing
between the output signals. The transfer function of the
MIMO system in this case is , where

. It is easy to
see that in this case, the resulting has a full rank for all ,
and therefore, reconstruction is possible.

We next show that we can get such a solvable set of equa-
tions for all the frequency content of the input signals only when

is an integer, implying that this is a necessary condition
for reconstruction.

Suppose is not an integer but that ,
where is an integer. As we sample, say, the output signal

at every , we get an aliased (sampled)
signal whose period in the frequency domain is still .
Again, we choose as the basic period the interval

. This interval can be further divided to intervals of
size each. We see that in the first mod of these
intervals, the Fourier transform of the sampled signals is
composed of replicas of , whereas in the rest of
the mod intervals, there are only replicas. This
situation is illustrated in Fig. 2 for the case , .
For the frequencies where there are onlyreplicas, we have

equations (an equation for each output signal) for un-
knowns (the unknowns are the replicas of each of the
input signals). Because , there are more equations
than needed for a solution in this interval. This means that we
somehow wasted samples in this frequency interval, which will
cause a shortage of samples for the other frequency intervals (re-
call that the total sampling rate is exactly times the Nyquist
rate). Indeed, in the frequency intervals where there are
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replicas, we have unknowns but only equations,
and since , the set of equations
does not have a single solution, but there is a space of many
possible solutions. Since it is assumed that no known functional
dependency between theinput signals exists, there are no ad-
ditional conditions to determine a unique reconstruction of the
input signals. In summary, we do not have enough information
to reconstruct the input signals in this case, where is not
integer, and all outputs are sampled at the same rate.

B. The VSE Interpolation Formula

In this section, we provide the explicit interpolation formula
for the case where is an integer, and reconstruction
is possible. This derivation resembles the technique used in [4]
and [6].

The first step is to write an explicit expression for
the input signal in terms of its aliased components

, which, as described above,
can be reconstructed for . Then, we use
the inverse Fourier transform formula and a simple change of
variables to write

(7)

This relation can be expressed in terms of , which is the
vector defined in (5), i.e.,

(8)

where is an -dimensional vector whoseth compo-
nent is nonzero and equals only in the region

[i.e., at this region, it takes the values
], and it is zero elsewhere. Note that since

, for any integer , i.e., it is peri-
odic with period , where .

We now define a set of -dimensional vectors
as the solutions of

(9)

where , which is defined in (6), is assumed to be invertible
at each to assure reconstruction. Note that
since is periodic, is also periodic in with period

.
Equation (10), shown at the top of the next page, is a more de-

tailed representation of (9). The matrix is com-
posed of matrices of size . The th matrix, which cor-
responds to the equations for which we have nonzero values
in , is similar to Papoulis’ original system of equations,
only that Papoulis’ matrix is of size . The reason is that
in our case, each output channel is sampledtimes faster than

Fig. 2. Components of theith output channel in the frequency domain when
N = 2 andM = 3.

in the GSE case, and therefore, the number of equations is re-
duced by a factor of , i.e., there are only equa-
tions. The missing equations are obtained by forcing
the output of the reconstructedth channel to be independent on
the other input channels. These equations correspond to
the zero components of . The GSE is, of course,
a particular case of the VSE when .

Since , and using the relation (4),
(8) becomes

(11)

which is the interpolation formula expressing the input signals
in terms of the Fourier transform of the aliased sampled signals.

To get a formula in the time domain, we define the signals

(12)

Note that is not periodic, despite the fact that
is periodic in . Now, the Fourier transform of the sampled signal
is given by

(13)

Thus, substituting (12) and (13) in (11) and using the fact that
is periodic in with period , we get the interpolation

formula in the time domain

(14)

This equation describes a sum ofconvolutions of the sam-
pled sequences with the signals , which are calculated by
(12) from the vectors that depend solely on the MIMO
system via the relation (9).

We can write this result in a matrix form as

(15)



1404 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 5, MAY 2000

...
...

...

...
...

...

...
...

...

...
...

...

...

...

...

...

(10)

where ,
, is the matrix of signals whose th

component is . The symbol in (15) means that
convolutions are performed instead of multiplications in the
matrix-vector multiplication.

C. Frequency Domain Solution

Brown [7] showed that the Fourier transform of , i.e.,
the frequency response of the filter that operate on theoutput
in a GSE reconstruction system, can be found directly, without
calculating . We derive a similar formula for the VSE.

We denote the Fourier transform of by . We
also define the matrix , where the th
component of is . This is a slice of width
in of the Fourier transform of of (12), which is shifted
left in by . A closer look shows that we have

(16)

Using (4), we immediately see that

(17)

which is a frequency domain reconstruction formula similar to
Brown’s formula. Note that the Fourier transforms of the recon-
struction filters can be found directly from the columns of the
inverse of . We use this representation later on in Sec-
tion V for noise sensitivity analysis.

D. The Discrete Signal Case

The discrete equivalent to Papoulis’ GSE is the “alias-free
QMF bank” or the “perfect reconstruction QMF bank,” which
have been discussed by many [8]. This equivalence has been uti-
lized by Vaidyanathan and Liu [9], who developed, for example,
sampling theorems for nonuniform decimation of discrete time
sequences. This resembles using the GSE to prove Yen’s peri-
odic nonuniform sampling [16]. A similar perfect reconstruc-
tion (PR) condition for the discrete VSE case has been derived

in [10]. The PR condition mentioned in [8, eq. (64)] and [9, eq.
(8)] is a particular case of a discrete VSE for .

It is also shown in [10] that the PR condition of the discrete
VSE is a special case of the continuous frequency domain so-
lution given by equation (17), in which the filters of the MIMO
system are periodic in with periods of . Thus, the contin-
uous case is more general.

Purely speaking, in the discrete time world decimation is only
by an integer factor, and therefore, in the accurate discrete equiv-
alent to the VSE, is integer. Thus, the problem of nonin-
teger and other issues discussed in the paper are relevant
only for the continuous-time case.

E. Stochastic Signal Case

We now discuss the interpolation formula for the case where
the inputs are bandlimited wide-sense stationary (WSS)
processes . We can reconstruct the input
process by using, e.g., (14). The reconstructed input

will be equal in the mean square sense to , i.e.,
. To prove that, we derive the inter-

polation formula (14) using another technique that enables the
analysis of the stochastic signal case. This technique follows
Papoulis [1],[2], [11].

We begin by looking at (9) or its equivalent (10), corre-
sponding to the reconstruction of theth input signal. The
matrix equation (10) can be divided to groups of equa-
tions. The th equation of the th group in case is

(18)

where , . This equation
thus corresponds to groups. As for theth group, i.e., the
case where , the th equation is

(19)
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where again, . We first discuss (19). The
signal , in the interval , consid-
ered periodic in with period , can be expanded into a Fourier
series. Using (12) and the periodicity of in , we see
that the coefficients of the expansion are the ’s. We
can therefore write

(20)

We now replace by in (19). Multiplying the equations
corresponding to the choice by and using (20), we
have new equations

(21)
This is true for and for every

. Using the identity
and substituting for , for every , we conclude that
these equations may be represented by a single equation that
holds in the entire interval . Thus, we have

(22)

for every . The right-hand side of this equation
is the frequency response of an LTI system corresponding to
a time shift . The left-hand side is a sum of terms of the form

. Each term is the frequency response
of an LTI system, whose response to an input will be

, where

(23)

Thus, with an input , we get from (22) in the time domain

(24)

For the cases where , we get that

(25)
From the definition of the MIMO system (1), we recall that

(26)

Adding (24) to the equations of (25) and using (26), we
get

(27)

Choosing to be zero and exchangingand leads to the inter-
polation formula (14).

For the case where the inputs arebandlimited wide-sense
stationary (WSS) processes , , (22) still de-
scribes two LTI systems. We recall that two linear systems that
have the same frequency response and are fed by the same ban-
dlimited WSS input generate two outputs that are equal in the
mean square sense ([11, eq. (11–126)]). Specifically, if a WSS
processes is the input to the two systems described by (22),
the two outputs will be equal in the mean square sense. There-
fore

(28)

where (which is now a WSS stochastic process) is the
output of the LTI filter fed by , and the equality is in
the mean square sense. Using this reasoning, and following the
derivation of (27), we also get

(29)

where the right-hand side is , which is the reconstruc-
tion of . Choosing and exchanging with
concludes the proof for the stochastic signal case.

III. N ONEQUAL UNIFORM SAMPLING

In this section, we consider the case where we sample theth
output of the MIMO system every , where is a
rational number , and where and are rela-
tively prime, i.e., GCD , where GCD is the greatest
common divisor, and where . This is depicted in Fig. 3.
The total sampling rate is times the Nyquist rate, i.e.,

(30)

We define as the least common multiplier (LCM) of the’s
and, as usual, denote .

The period of in is . The choice of
as the LCM of the ’s assures that is an integer mul-

tiple of . This means that in theth output channel, we have
intervals of size in one period. For each

interval, we can write one equation in the frequency domain that
can be transferred to by change of variables.
Therefore, the total number of these intervals is the number of
equations available. As can be seen below, this number is:

We have such intervals in the whole bandwidth for
all of the input signals. The Fourier transforms of these
intervals are the unknowns. Therefore, we have a system of
equations and unknowns. If the matrix representing
this system is invertible in , we can uniquely
determine the input signals. Fig. 4 demonstrates the intervals
(unknowns) and the equations in a specific example of ,

, , , , and .
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Fig. 3. VSE system using nonequal uniform sampling.

Note that as we already know, in some sampling combina-
tions such as sampling all outputs, every , where
is not an integer, unique reconstruction is not possible. In these
cases, the matrix is always noninvertible, no matter what
system is used.

From the analysis done for the expansion by an integer factor,
we realize that the general rule for unique solution is that equa-
tions should not be wasted. This general rule leads to the fol-
lowing two equivalentnecessaryconditions for unique recon-
struction.

i) For any possible set of equations, the number of equations
in the set must be less than or equal to the number of all
the unknowns appearing in these equations.

ii) For any possible set of intervals (each representing
unknowns), the number of unknowns in the set (which is

times the number of intervals in the set) must be less
than or equal to the number of all equations in which one
or more of these intervals appear.

Condition ii) is clear. If we have a set of unknowns that
appear only in equations, we cannot have a unique so-
lution for these unknowns. Similarly, condition i) is clear. Since
the total number of equations and unknowns is the same,
then if we have a set of equations in which there are only

unknowns, we must have, in the rest of the
equations, unknowns, for which we
cannot have a unique solution.

In addition to these conditions, for unique reconstruction, the
matrix should be such that the determinant of the resulting
matrix is not zero for every . Intuitively,
in this case, the samples of the output channels are consid-
ered to be “independent.” Such a matrix can always be
found when the conditions above are satisfied, and therefore,
these conditions are essentially necessary and sufficient in the
sense that this sampling combination allows a unique recon-
struction. Note that if the conditions above are not satisfied, then
for any choice of , the determinant of is zero.

Unfortunately, the benefit of the conditions above can some-
times be limited. It is true that in some cases, we can verify
immediately that the necessary conditions are not satisfied and
rule out a specific sampling combination. However, if the sam-
pling combination allows a unique reconstruction, we would
have to check all possible sets of intervals to see that nei-
ther choice violated the second condition above. A better way,
in this case, would be to find the determinant of , which
requires operations.

Fig. 4. Intervals and unknowns in nonequal uniform sampling.

There is yet another possibility. It is shown in the Ap-
pendix that determining whether a unique reconstruction is
possible, i.e., whether the matrix is invertible for all

, is equivalent to the problem of perfect
matching in a bipartite graph. The graph nodes are the rows
and the columns of the matrix , and the
edges correspond the nonzero elements of that represent
the equations of unknowns described above. The
perfect matching is a well-known combinatorial problem. This
problem is equivalent to the Hallmarriage problem, to which
Hall [12], [13] provided necessary and sufficient conditions.
These conditions can be verified using the “Hungarian method”
of König and Egerváry, which requires operations,
or even by operations of Hopcroft and Karp
[14] or Even [15]. This approach has the additional advantage
that the question of whether or not unique reconstruction is
possible can be answered without choosing specific values for
the MIMO system .

Although we cannot specify explicitly the exact condition for
allowing reconstruction that can be checked easily, we provide
below a simplesufficient condition. This condition implies that
when all ’s are integers, we can have a unique reconstruction.

A. A Sufficient Condition for Unique Reconstruction

We start with the set consisting of all the intervals
. For this set, the number of equations is , and
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the number of unknowns is also . We now split this set into
two sets and having and intervals, respectively.
We denote the number of all equations includingonly intervals
belonging to the set as . Let us now find an upper limit
for . It is clear that in a channel where , there
are at least replicas, i.e., intervals, in every equation.
Therefore, in all output channels having , we have
no equations including only intervals from the set.

In a channel with , we have at least replicas
in all the equations. This means that it might be possible
to choose such intervals so that we will have
equations, which includes only intervals belonging to the set

. Therefore

(31)

This is an inequality because there is no guarantee that the
intervals chosen for the set will fit all, or even any, equation
in all channels having .

The condition

(32)

is a sufficient condition allowing a unique solution. This is so
because , which denotes the number of remaining equations
after removing the equations that include only intervals that
belong to the set , satisfies

(33)

which is actually condition ii) mentioned above.
Suppose that all ’s are integers. Therefore, we have

(34)

This implies that choosing integer ’s allows a unique recon-
struction.

The fact that unique reconstruction is possible for integer
’s can be shown in another way. In this case, we can choose

so that one of the representations of is a doubly sto-
chastic matrix. A doubly stochastic matrix is a convex combina-
tion of permutation matrices, and therefore, a perfect match is
possible in the bipartite graph associated with the matrix .
As noted above, this means that unique reconstruction is pos-
sible.

An example showing that (32) is not a necessary condition is
the case of , , where , and .

Here, we see that (32) is not satisfied, e.g., for . However,
calculating the determinant of the appropriate matrixshows
that a unique solution is possible.

B. Interpolation Formula for Integer ’s

Integer ’s allow reconstruction. We now present the asso-
ciated interpolation formula. We first note that for every

, we can always choose for and
for . Since these choices

satisfy (30), it means that we always have at least one sampling
combination allowing reconstruction in which the sampling pe-
riods are integer multiples of for every .

When sampling at , the Nyquist rate, i.e., at a sam-
pling period of where is an in-
teger, we get aliased versions of the output signals, which, at
the frequency domain, are periodic with a period .
We could perform the same analysis as in the integer expan-
sion factor case. However, such an analysis leads to a relatively
complicated interpolation formula. Thus, we use a different ap-
proach that results in a much simpler interpolation formula. In-
stead of sampling theth output channel every , we stagger
the th output, i.e., first split it into identical
channels and then shift backward theth duplicated signal by

. We therefore get a modified
MIMO system having outputs, as in Fig. 5.
Sampling each output signal of the modified MIMO system at
sampling period is equivalent to sampling theth
output channel every . This modified system has inputs and

outputs. Therefore, we get an integer expansion factor, for
which we had already found the interpolation formulas; see (9),
(12), and (14).

Let us now describe the system of equations resulting from
the modification of the MIMO system mentioned above. First,
we denote by the -dimensional vector given by

(35)

i.e., its th component is for , for
and for , where

(36)

and is the Fourier transform of when
it is sampled every ( ).

Then, we write

(37)

where is identical to that of (5) and where is an
matrix whose th component is given by (38)

(38)
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Fig. 5. Modifying the system for integerm ’s.

Thus, is made of blocks of each. The
th block is described in (39), shown at the bottom of the

page.
Note that if for , we

can reconstruct the input signals from the samples of the
output channels of the original MIMO system. According

to (9), (12), and (14), we can find the ’s, where
. The interpolation formula is

(40)

In order to get a simple interpolation formula that resembles
(14), we define

mod mod (41)

and then we can write the interpolation formula

(42)

C. An Example

Using the condition of (32), we can easily verify that the
sampling combination of , , and ,

, and allows a unique solution for
every integer , which is greater than or equal to two. The fol-
lowing example for the case of and demonstrates
that we can apply the interpolation method described in the pre-
vious section to reconstruct the input signals, although the’s
are not integers. The blocks described in (39) will still be of size

, where .
In our example, we have

(43)

where , , , and are constants, and .
We choose to sample the first output every , the second

output every , and the third output every ,
i.e., , , and . In this case, we have

and .
According to (38), is given by (44), shown at the bottom

of the next page. From (9), (12), and (44) we find (44a), also
shown at the bottom of the next page, where

Note that the right-hand side in the first three equations in (44a)
is the Sinc function multiplied by and cen-
tered at 0, , and , respectively. The right-hand side in the
last three equations equals Yen’s [16] reconstruction filters for
periodic nonuniform sampling with , , and

, multiplied by . This is not surprising since
the modified system in this specific example can be represented
by a 2 2 matrix of

(39)
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followed by uniform sampling of one output and periodic
nonuniform sampling of the other output. Therefore, the
Sinc function reconstructs the first output, Yen’s functions
reconstruct the other output, and then, we use the inverse of the
matrix to reconstruct the two inputs, which is equal to the mul-
tiplications by the factors mentioned above. The reconstruction
filters for the second input are similar but with the factors of

and

Without using the combination suggested in (41), the inter-
polation formula is given by

(45)

Using (41) we find

(46)

(47)

(48)

(44)

(44a)
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and therefore, we get the final interpolation formula

(49)

which of course is equal to (45).

IV. EQUAL PERIODIC NONUNIFORM SAMPLING

Another possible solution to the case where is not an in-
teger, is to employ nonuniform sampling. The simplest scheme
is to sample each of the outputs at the Nyquist rate, but in
each of the channels, use only the firstsamples from every
set of samples and delete the remaining samples, as
depicted in Fig. 6.

Similarly to Section III-B, we first split every output channel
to identical signals and then shift backward (in time) theth
duplicated signal by . We therefore get a
modified MIMO system having outputs. If we now sample
each output signal of the modified MIMO system at sampling
period , it is equivalent to sampling every orig-
inal output channel samples at Nyquist rate (sampling period
of ) and then waiting for a period of samples
before sampling again, which means an average sampling rate
of times the Nyquist rate. This modified system has
inputs and outputs. Again, as in Section III-B, we reached
a situation of an integer expansion factor, for which we had al-
ready found the interpolation formula.

Let us now describe the system of equations for the modi-
fied MIMO system. We denote by the -dimensional
vector given by

(50)

i.e., its th component is mod , where

is the Fourier transform of when it
is sampled every and .

We also denote by the -dimensional vector given
by

(51)

where . Therefore, we have

(52)

where is an matrix whose th component
is given by

Fig. 6. Simple periodic nonuniform sampling.

(53)

i.e., is made of blocks of each, where the
th block is described in (54), shown at the bottom of the

next page. When for , we
can uniquely reconstruct the input signals from the nonuni-
form but periodic samples of the original output channels.

Let us now use (9), (12), and (14) to find the ’s, where
. The interpolation formula is therefore de-

scribed by

(55)

In order to get a simple interpolation formula that resembles
(14), we should unite the ’s for .
We now define

(56)

and denote

(57)

Using this, we can write the interpolation formula

(58)

A similar analysis can be performed when thesampling
points are located arbitrarily along the interval at locations

, where , and . If this is the
case, the only modification in the matrix is that the blocks
described in (54) will be as in (59), shown at the bottom of the
next page.

It can be easily verified that when the’s are chosen to
be , i.e., uniform sampling, the re-
sulting matrix is noninvertible when is not an in-
teger.
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V. NOISE SENSITIVITY OF VSE SYSTEMS

The analysis conducted so far assumed that the sample values
were known within an infinite precision. In practice, we never
have the exact values of the samples due to quantization and
noise; therefore, it is interesting to explore the sensitivity of VSE
systems.

The first issue is well posedness. In GSE, this problem was
initially discussed by Cheung and Marks [17], who found a suf-
ficient condition for ill-posedness of the system. Under their
definition, an ill-posed GSE system produces a reconstruction
error with unbounded variance when a bounded variance noise
is added to the samples. Later on, Brown and Cabrera [18], [19]
found a necessary and sufficient condition for well posedness
of GSE systems. We find a similar condition for VSE, where in
our definition, a well posed VSE system produces a reconstruc-
tion error with bounded variance in all reconstructed signals
when a bounded variance noise is added to the samples. In de-
riving this condition, we also get an expression for the recon-
struction noise power for each reconstructed signal. This result
is discussed in Section V-A.

The expression for the reconstruction noise level provides
a quantitative measure for the noise sensitivity of the system.
Using this, we can then determine the optimal VSE systems, i.e.,
the systems that minimize the total reconstruction noise level,
under some power constraints. This is discussed in Section V-B.

A. Reconstruction Noise Power and Well Posedness of VSE
Systems

In our analysis, the noise of the VSE system at reconstruction
is a result of adding a zero mean white discrete stochastic noise
sequence to each sample sequence, generated by sampling the

output channels, prior to reconstruction. This noise repre-
sents the quantization errors and other system inaccuracies. It is
assumed that the quantization noise is statistically independent
of the signals and that noise sample sequences added to different
channels are also statistically independent. Denote theth noise

value, which is added to theth sample of the th channel by
, where

(60)

and is a zero mean random variable.
We now calculate the contribution of this noise to the recon-

structed signal produced by

(61)
We specifically want to find the value of , where

(62)
However, the signal is not a wide sense stationary (WSS)
signal since due to aliasing, it is a sum ofcorrelated, WSS
signals, shifted in frequency. Thus, we look for the time-aver-
aged value .

Instead of analyzing the time domain expression of the recon-
struction noise (reconstruction error) given by (62), we conduct
our analysis in the frequency domain. Using (4), we can write
the reconstruction equation in the frequency domain

(63)

As seen from (63), every row of the matrix describes a “slice” of
the reconstructed spectrum. The th row describes
the reconstruction of for ,
which means it describes for

.
We now analyze the effect of adding the uncorrelated noise

samples to the th output of the MIMO system. This
is equivalent to adding to , prior to sampling, a WSS sto-
chastic process , which is bandlimited to
and has a spectral power density of , where

(54)

(59)
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and , as described in Fig. 7. The
power spectrum of the noise at the output of the system repre-
sented by the th row of , resulting from

, is given by

(64)
where implies that this contribution is in the interval

, the subscript implies that this is
the contribution of the noise coming from theth channel only,
and the subscriptimplies that this is the contribution to theth
reconstructed signal. We now wish to calculate the joint contri-
bution of all noise sources to theth reconstructed signal. Be-
cause the noise sources are statistically independent (and there-
fore uncorrelated), the total contribution is simply the sum of all
separate contributions

(65)

This is the spectrum of a frequency slice of the reconstruction
noise imposed on theth reconstructed signal, which is
shifted left in frequency by . We denote this frequency
shifted left slice by . Note that although is not
a WSS signal, its components are WSS. We now
calculate . The signal is given by

(66)

where

(67)

and

(68)

and so have

(69)

where is the correlation matrix of the vector .
Since is periodic in with an integer number of periods in

, we have

(70)

Using the relations , , and ,
we find that

(71)

We now denote the matrix composed of the rows
of by so that (71) may be written

as

(72)
This is the general equation for the noise level at theth recon-
structed channel.

We denote the sum of all by . Using (71) we
get

Tr (73)

We now derive, using (72), a test that checks whether a VSE
system is ill posed or well posed. This test is similar to the one
suggested by Cheung and Marks [17] and Brown and Cabrera
[18] for GSE systems. From (17), we see that the th com-
ponent of is

(74)

Substituting in (72) [actually in (71)], using a change of vari-
ables and noticing that the sum of the resulting
integrals over the intervals can be
combined into an integral over the continuous interval ,
we get

(75)

As noted above, a well posed VSE system is such that
is bounded for every bounded . From (75),

we conclude, similarly to [17] and [18], that a necessary
condition for the well posedness of a VSE system is that all
reconstruction filters have a finite energy. It is also
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Fig. 7. Quantization noise in a VSE system.

a sufficient condition since we can easily see from (69) that
, i.e., it is finite when the

have a finite energy.
Using some simple matrix algebra, we get from (73)

(76)

where we assume that all are bounded from
above by some finite number . Under this assumption,

is a sufficient condition for well posed-
ness. A similar condition was found by Brown and Cabrera
[19] for GSE systems.

B. Optimal VSE Systems

We first wish to find the optimal VSE system in the sense of
minimizing the total time-averaged mean square reconstruction
error . Later on, we will also look for systems that minimize
separately , which is the noise at a specific recon-
structed signal. In order to get a meaningful answer, we need to
impose power constraints on the filters of the VSE system since
otherwise, the components of , and therefore the output
of the MIMO system, could be increased to any desired value,
making the quantization noise insignificant. We will discuss
several such constraints.

1) Minimal : Consider the following power constraint on
the filters of the MIMO system:

(77)

This power constraint was chosen because it is satisfied by the
simple VSE system having inputs and outputs (integer

), in which is for
and 0 otherwise ( ). After sampling, this system is
equivalent to Nyquist sampling of the input signals .

The constraint (77) can also be expressed using the matrix

(78)

We now minimize the right hand side of (73) under the power
constraint (78). Let us start with a specific frequencyand min-
imize Tr , which is the integrand in (73).
Suppose that

Tr (79)

In addition, denote the eigenvalues of the matrix
by . Recall that the

trace of a matrix equals the sum of its eigenvalues, and there-
fore

(80)

Now, minimizing Tr is equivalent to min-
imizing . The minimum, under the constraint
that , is achieved by

(81)

i.e., all eigenvalues of should be equal. The min-
imal value of is .

Returning to (73)

(82)

Minimizing the right-hand side under the power constraint
of (78) leads to

(83)

Thus optimal performance is attained by

(84)

The only matrix in which all eigenvalues equal to is
. Therefore, of an optimal VSE system must be

times a unitary matrix for every . Such a
system produces a total noise of . Thus, under the power
conditions of (77) or (78), we always have

(85)

where equality occurs only if (84) is satisfied. The optimal value
of the reconstruction noisedoes notdepend on .

We now define the noise amplification factor

(86)

An infinite suggests that the system is ill posed or even that
the matrix is singular. From (85), we see that

(87)

This means that when we demand equal reconstruction noise,
or equal noise amplification, for all reconstructed signals, we
get .

We can also determine the minimal possible value of a spe-
cific by considering theth reconstructed signal as coming
from a GSE system with one input and outputs sampled
times faster than necessary. Using the result above, and the fact
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that the noise is averaged over thepossible versions of the
reconstructed signal, we get

(88)

2) Power Constraint on the Inputs:Consider the following
more restrictive power constraint. For every

(89)

This constraint is called power constraint on the inputs since it
involves all of the filters receiving at their input.
Note that this constraint does not contradict the previous power
constraint of (77).

Under this power constraint, we can still attain ,
i.e., . However, now, the minimal value of is
1 for all . The solution that simultaneously attains also
attains the minimal . This is shown by considering, again, the
th reconstructed signal as coming from a GSE system with one

input and outputs, sampled times faster than necessary,
but now, the power constraint on the inputs forces the power to
be times smaller, and therefore, here, .

3) Power Constraint on the Outputs:Another more restric-
tive power constraint is “power constraint on the outputs.” For
every

(90)

i.e., the same power in all outputs.
We show that this constraint allows the attainment of the min-

imal value , but the better noise amplification factor
of one signal comes at the expense of a worse amplification for
the other signals. We start our analysis with filters sat-
isfying

(91)

for every and . We define positive amplification factors
and demand that

(92)

Suppose we have a system satisfying (91) and having all
. Such a system can always be found, e.g., by using

ideal subband filters. By amplifying theth input signal by a
factor , we get , and therefore, we can control
the noise amplification factor of each signal.

When the amplifying factors are used, the total noise is

(93)

Using the Lagrange multipliers method, it is easy to see that the
minimum value of , under the constraint of (91), is achieved
only when all are 1. This means that improving the noise of
a certain output leads to a higher loss in the other outputs.

The situation discussed above can be demonstrated by the
following example. Let , and suppose that initially,

for all values of . We want to have , so we
set to be 2. Because , we have .
If we choose for , we find that

Note that when (91) is satisfied, we have such control on the
reconstruction noise even if the VSE system is not optimal. This
enables control of the reconstruction quality of some of the sig-
nals at the expense of the rest of the signals while keeping the
output level equal (which simplifies quantization).

We end this section by pointing out a simple example of op-
timal VSE system, with . Let be

(94)

Since is unitary, we have for every
. Interesting cases can be obtained by choosing

various values for . For example, using for
, and elsewhere, leads to an optimal VSE

system composed of ideal bandpass filters.

VI. CONCLUSION

In this paper, we have shown that under certain conditions
on the sampling rates, it is possible to reconstructbandlim-
ited signals, which are the inputs to a MIMO LTI system, from
periodic samples of the outputs of the system ( )
while keeping the total rate to be times the Nyquist rate.
We discussed equal uniform sampling, nonequal uniform sam-
pling, and equal periodic nonuniform sampling. Interestingly,
for equal uniform sampling, reconstruction is possible only if
the expansion is by an integer factor ( is an integer). It is
also shown that for any , there is at least one sampling
combination in which the sampling periods are multiples of the
Nyquist period that allow reconstruction. In all cases, we also
derived the explicit interpolation formulas.

The paper contains a noise sensitivity analysis, which deter-
mine the necessary and sufficient conditions for minimum time
averaged mean square reconstruction error. We defined the noise
amplification factor, which provides a quantitative comparison
of VSE systems under a power constraint.

APPENDIX

HALL ’S MARRIAGE PROBLEM, PERFECTMATCHING OF

BIPARTITE GRAPH, AND THE INVERTIBILITY OF

As we show below, determining whether a unique reconstruc-
tion is possible, i.e., whether the matrix can be made in-
vertible for all , is equivalent to Hall’smar-
riage theorem[12], [13]. This theorem is also known as the
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SDR theorem of Hall, where SDR stands for “systems of dis-
tinct representatives” [14], [20], [21]. The theorem deals with
the necessary and sufficient condition for selecting a distinct
set from the set of members such that
there is a one-to-one correspondence between each of the com-
ponents of the chosen set and the components of a given set

, which is a set of subsets of.
For example let ,

, where , ,
, , and . The set
is a set of distinct representatives, where

• 2 represents ;
• 6 represents ;
• 3 represents ;
• 5 represents ;
• 1 represents .

In case we had the sets , ,
, , and , we could not find a set of

distinct representative since only four elements ofparticipate
in , whereas there are five sets in.

Hall’s SDR theorem states that an SDR exists for
if and only if every collection of

sets of contains at least distinct members for every
possible value of , i.e., for all (see [20]).

In other words, the union of every combination ofsets must
contain at least elements. This is a necessary condition since
otherwise, we would not be able to assign a distinct element to
every set as shown in above example. The proof that this is a
sufficient condition can be found, for example, in [21].

As noted in [22], this is similar to condition i) of Section III,
which demands that for any possible choice ofequations,
must be less than or equal to the number of all the unknowns
appearing in the equations. The equations are the sets, and
the unknowns are the components of the set.

The SDR problem is equivalent to the problem ofmatching
in a bipartite graph [14]. A bipartite graph is a graph composed
of two disjoint subsets of vertices such that no vertex in a subset
is adjacent to vertices in the same subset [23], i.e., it can be
considered as two columns of vertices. We can consider one of
them (the left one for example) as representing the setsand the
other (the right one) as representing the set. When discussing
testing of a sampling combination, the first represents the rows
of the matrix (i.e., the equations), and the other represents
the columns (i.e., the unknowns). An edge of the graph con-
nects theth left vertex to the th right vertex if is a member
in . In our case, when we are testing a sampling combination,
an edge connecting theth left vertex to the th right vertex ex-
ists if is nonzero, i.e., if theth unknown appears in the
th equation. A perfect matching of bipartite graph having the

same number of vertices in both sides is a matching in which all
vertices of the two sides of the graph are connected with only
one edge. This is similar to finding a distinct representative for
each of the sets of the left, in the list of the ’s on the right,
when both sets have the same number of elements. Here, we
clearly see the equivalence of the SDR problem and the perfect
matching problem. Such a perfect matching can be described
as a permutation , where represents the edge con-

necting and . We denote the permutation matrix by .
The th component of is one only if and zero
otherwise.

We now show that a necessary and sufficient condition, al-
lowing an invertible matrix , is the existence of a perfect
matching in the corresponding bipartite graph.

It is a necessary condition since the determinant of
any matrix of size can be written as

(see
[14] and [24]). Thus, if no permutation exists in which all
components are nonzero, the determinant must be zero.

Sufficiency is easily shown since having a perfect matching
means that at least one permutation matrix (the one that
describes the perfect matching) exists, where all compo-
nents are nonzero. If we choose these components to be
1 and the rest of the components in to be zero, we have

, which is definitely invertible.
Hall’s conditions can be verified using the “Hungarian

method” of König and Egerváry, which requires
operations or even by operations of Hopcroft and
Karp (see [14]) or Even [15]. This approach has the advantage
that the question whether or not unique reconstruction is
possible can be answered without choosing specific values for
the MIMO system .
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